Spaces:
Runtime error
Runtime error
import os | |
import subprocess | |
import streamlit as st | |
from utils import get_configs, get_display_names, get_path_for_viz, get_text_str, get_meta_path | |
query_params = st.experimental_get_query_params() | |
disable_header = "header" in query_params and query_params["header"][0] == "false" | |
if not disable_header: | |
st.title("EVREAL - Event-based Video Reconstruction Evaluation and Analysis Library") | |
paper_link = "https://arxiv.org/abs/2305.00434" | |
code_link = "https://github.com/ercanburak/EVREAL" | |
page_link = "https://ercanburak.github.io/evreal.html" | |
st.markdown("**Paper**: " + paper_link, unsafe_allow_html=True) | |
st.markdown("**Code**: " + code_link, unsafe_allow_html=True) | |
st.markdown("**Page**: " + page_link, unsafe_allow_html=True) | |
dummy_string_to_make_huggingface_happy = "ercanburak/evreal_model" | |
def retrieve_results(selected_dataset, selected_sequence, selected_models, selected_metrics, selected_visualizations): | |
meta_enabled = False | |
meta_path = get_meta_path(base_data_dir, selected_dataset, selected_sequence) | |
if meta_enabled and not os.path.isfile(meta_path): | |
raise ValueError("Meta file not found: {}".format(meta_path)) | |
gt_only_viz = [viz for viz in selected_visualizations if viz['viz_type'] == 'gt_only'] | |
model_only_viz = [viz for viz in selected_visualizations if viz['viz_type'] == 'model_only'] | |
both_viz = [viz for viz in selected_visualizations if viz['viz_type'] == 'both'] | |
recon_viz = {"name": "recon", "display_name": "Reconstruction", "viz_type": "both", "gt_type": "frame"} | |
ground_truth = {"name": "gt", "display_name": "Ground Truth", "model_id": "groundtruth"} | |
model_viz = [recon_viz] + both_viz + selected_metrics + model_only_viz | |
num_model_rows = len(model_viz) | |
gt_viz = [] | |
if selected_dataset['has_frames']: | |
gt_viz.append(recon_viz) | |
gt_viz.extend([viz for viz in both_viz if viz['gt_type'] == 'frame']) | |
gt_viz.extend([viz for viz in gt_only_viz if viz['gt_type'] == 'frame']) | |
gt_viz.extend([viz for viz in both_viz if viz['gt_type'] == 'event']) | |
gt_viz.extend([viz for viz in gt_only_viz if viz['gt_type'] == 'event']) | |
num_gt_rows = len(gt_viz) | |
num_rows = max(num_model_rows, num_gt_rows) | |
if len(gt_viz) > 0: | |
selected_models.append(ground_truth) | |
padding = 2 | |
font_size = 20 | |
meta_width = 250 | |
meta_height = 70 | |
num_cols = len(selected_models) | |
crop_str = "crop=trunc(iw/2)*2-2:trunc(ih/2)*2," | |
pad_str = "pad=ceil(iw/2)*2+{}:ceil(ih/2)*2+{}:{}:{}:white".format(padding*2, padding*2, padding, padding) | |
w = selected_dataset["width"] | |
h = selected_dataset["height"] | |
font_size_scale = w / 240.0 | |
font_size = int(font_size * font_size_scale) | |
input_filter_parts = [] | |
xstack_input_parts = [] | |
layout_parts = [] | |
video_paths = [] | |
row_heights = [""]*num_rows | |
gt_viz_indices = [] | |
if len(model_viz) > 1: | |
left_pad = int(font_size*0.8) * max([len(viz['display_name']) for viz in model_viz[1:]]) + padding*2 | |
else: | |
left_pad = 0 | |
if meta_enabled: # add meta video | |
if left_pad < meta_width: | |
left_pad = meta_width | |
video_paths.append(meta_path) | |
xstack_input_parts.append("[0:v]") | |
meta_h_offset = (h - meta_height) / 2 | |
layout_parts.append("0_{}".format(meta_h_offset)) | |
for row_idx in range(num_rows): | |
for col_idx in range(num_cols): | |
vid_idx = len(video_paths) | |
cur_model = selected_models[col_idx] | |
if cur_model['name'] == "gt": | |
if row_idx < len(gt_viz): | |
video_path = get_path_for_viz(base_data_dir, selected_dataset, selected_sequence, cur_model, gt_viz[row_idx]) | |
if not os.path.isfile(video_path): | |
raise ValueError("Could not find video: " + video_path) | |
gt_viz_indices.append(vid_idx) | |
else: | |
continue | |
else: | |
if row_idx < len(model_viz): | |
video_path = get_path_for_viz(base_data_dir, selected_dataset, selected_sequence, cur_model, model_viz[row_idx]) | |
if not os.path.isfile(video_path): | |
raise ValueError("Could not find video: " + video_path) | |
else: | |
continue | |
if row_heights[row_idx] == "": | |
row_heights[row_idx] = "h{}".format(vid_idx) | |
if row_idx == 0: | |
pad_height = font_size+padding*2 | |
pad_txt_str = ",pad={}:{}:0:{}:white".format(w+padding*2, h+font_size+padding*4, pad_height) | |
text_str = get_text_str(pad_height, w, cur_model['display_name'], font_size) | |
pad_txt_str = pad_txt_str + "," + text_str | |
elif col_idx == 0: | |
pad_txt_str = ",pad={}:ih:{}:0:white".format(w + left_pad + padding * 2, left_pad) | |
if len(model_viz) > row_idx > 0: | |
text_str = get_text_str("h", left_pad, model_viz[row_idx]['display_name'], font_size) | |
pad_txt_str = pad_txt_str + "," + text_str | |
else: | |
pad_txt_str = "" | |
input_filter_part = "[{}:v]scale={}:-1,{}{}{}[v{}]".format(vid_idx, w, crop_str, pad_str, pad_txt_str, vid_idx) | |
input_filter_parts.append(input_filter_part) | |
xstack_input_part = "[v{}]".format(vid_idx) | |
xstack_input_parts.append(xstack_input_part) | |
video_paths.append(video_path) | |
if row_idx == 0 or col_idx > 0: | |
layout_w_parts = [str(left_pad)] + ["w{}".format(i) for i in range(col_idx)] | |
layout_w = "+".join(layout_w_parts) | |
else: | |
layout_w = "+".join(["w{}".format(i) for i in range(col_idx)]) if col_idx > 0 else "0" | |
if cur_model['name'] == "gt": | |
layout_h = "+".join(["h{}".format(i) for i in gt_viz_indices[:-1]]) if row_idx > 0 else "0" | |
else: | |
layout_h = "+".join(row_heights[:row_idx]) if row_idx > 0 else "0" | |
layout_part = layout_w + "_" + layout_h | |
layout_parts.append(layout_part) | |
inputs_str = " ".join(["-i " + video_path for video_path in video_paths]) | |
num_inputs = len(video_paths) | |
input_scaling_str = ";".join(input_filter_parts) | |
xstack_input_str = "".join(xstack_input_parts) | |
layout_str = "|".join(layout_parts) | |
# opt = "-c:v libx264 -preset veryslow -crf 18 -c:a copy" | |
opt = "" | |
# opt_fill = ":fill=black" | |
opt_fill = ":fill=white" | |
# opt_fill = "" | |
if num_inputs > 1: | |
ffmpeg_command_str = "ffmpeg -y " + inputs_str + " -filter_complex \"" + input_scaling_str + ";" + xstack_input_str + "xstack=inputs=" + str(num_inputs) + ":layout=" + layout_str + opt_fill + "\"" + opt + " output.mp4" | |
else: | |
# remove last paranthesis | |
idx = input_scaling_str.rfind("[") | |
input_scaling_str = input_scaling_str[:idx] | |
ffmpeg_command_str = "ffmpeg -y " + inputs_str + " -filter_complex \"" + input_scaling_str + "\"" + opt + " output.mp4" | |
print(ffmpeg_command_str) | |
ret = subprocess.call(ffmpeg_command_str, shell=True) | |
if ret != 0: | |
return None | |
video_file = open('output.mp4', 'rb') | |
video_bytes = video_file.read() | |
return video_bytes | |
def display_citation(): | |
citation_string = \ | |
""" | |
``` | |
@inproceedings{ercan2023evreal, | |
title={{EVREAL}: Towards a Comprehensive Benchmark and Analysis Suite for Event-based Video Reconstruction}, | |
author={Ercan, Burak and Eker, Onur and Erdem, Aykut and Erdem, Erkut}, | |
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops}, | |
month={June}, | |
year={2023}, | |
pages={3942-3951}} | |
``` | |
""" | |
st.markdown("## Citation") | |
st.markdown("If you find this tool useful, please cite the following paper:") | |
st.markdown(citation_string) | |
def display_acknowledgements(): | |
st.markdown("## Acknowledgements") | |
st.markdown("This work was supported in part by KUIS AI Center Research Award, TUBITAK-1001 Program Award No. 121E454, and BAGEP 2021 Award of the Science Academy to A. Erdem.") | |
def display_footer(): | |
st.markdown("## Contact") | |
st.markdown("For questions and comments, please contact [Burak Ercan](mailto:[email protected]).") | |
if not disable_header: | |
st.header("Result Analysis Tool") | |
base_data_dir = "data" | |
dataset_cfg_path = os.path.join("cfg", "dataset") | |
model_cfg_path = os.path.join("cfg", "model") | |
metric_cfg_path = os.path.join("cfg", "metric") | |
viz_cfg_path = os.path.join("cfg", "viz") | |
datasets = get_configs(dataset_cfg_path) | |
models = get_configs(model_cfg_path) | |
metrics = get_configs(metric_cfg_path) | |
visualizations = get_configs(viz_cfg_path) | |
dataset_display_names = get_display_names(datasets) | |
model_display_names = get_display_names(models) | |
metric_display_names = get_display_names(metrics) | |
viz_display_names = get_display_names(visualizations) | |
assert len(set(dataset_display_names)) == len(dataset_display_names), "Dataset display names are not unique" | |
assert len(set(model_display_names)) == len(model_display_names), "Model display names are not unique" | |
assert len(set(metric_display_names)) == len(metric_display_names), "Metric display names are not unique" | |
assert len(set(viz_display_names)) == len(viz_display_names), "Viz display names are not unique" | |
col1, col2 = st.columns(2) | |
default_dataset = "ECD" | |
default_sequence = "dynamic_6dof" | |
with col1: | |
default_dataset_index = dataset_display_names.index(default_dataset) if default_dataset in dataset_display_names else 0 | |
selected_dataset_name = st.selectbox('Select dataset:', options=dataset_display_names, index=default_dataset_index) | |
selected_dataset = [dataset for dataset in datasets if dataset['display_name'] == selected_dataset_name][0] | |
with col2: | |
dataset_sequences = list(selected_dataset["sequences"].keys()) | |
default_sequence_index = dataset_sequences.index(default_sequence) if default_sequence in dataset_sequences else 0 | |
selected_sequence = st.selectbox('Select sequence:', options=dataset_sequences, index=default_sequence_index) | |
selected_model_names = st.multiselect('Select methods to compare:', model_display_names) | |
selected_models = [models[model_display_names.index(model_name)] for model_name in selected_model_names] | |
disable_metrics = len(selected_models) == 0 | |
if disable_metrics: | |
tooltip_str = "Select at least one method to enable metric selection" | |
else: | |
tooltip_str = "" | |
usable_metrics = [metric for metric in metrics if metric['no_ref'] == selected_dataset['no_ref']] | |
usable_metric_display_names = get_display_names(usable_metrics) | |
selected_metric_names = st.multiselect('Select quantitative metrics to display:', usable_metric_display_names, | |
disabled=disable_metrics, help=tooltip_str) | |
selected_metrics = [metrics[metric_display_names.index(metric_name)] for metric_name in selected_metric_names] | |
if not selected_dataset['has_frames']: | |
usable_viz = [viz for viz in visualizations if viz['gt_type'] != 'frame'] | |
else: | |
usable_viz = visualizations | |
usable_viz_display_names = get_display_names(usable_viz) | |
selected_viz = st.multiselect('Select other visualizations to display:', usable_viz_display_names) | |
selected_visualizations = [visualizations[viz_display_names.index(viz_name)] for viz_name in selected_viz] | |
if not st.button('Get Results'): | |
if not disable_header: | |
display_citation() | |
display_acknowledgements() | |
display_footer() | |
st.stop() | |
video_bytes = retrieve_results(selected_dataset, selected_sequence, selected_models, selected_metrics, selected_visualizations) | |
if video_bytes is None: | |
st.error("Error while generating video.") | |
st.stop() | |
st.video(video_bytes) | |
if len(selected_metrics) > 0: | |
st.write("Note: For the selected metrics, the instantaneous values are indicated to the upper right of each subplot, " | |
"whereas the average value over the sequence is indicated in parenthesis next to it.") | |
if not disable_header: | |
display_citation() | |
display_acknowledgements() | |
display_footer() | |