Spaces:
Running
Running
import os | |
import streamlit as st | |
from utils import get_configs, get_display_names | |
# st.header("EVREAL - Event-based Video Reconstruction Evaluation and Analysis Library") | |
# | |
# paper_link = "https://arxiv.org/abs/2305.00434" | |
# code_link = "https://github.com/ercanburak/EVREAL" | |
# page_link = "https://ercanburak.github.io/evreal.html" | |
# instructions_video = "https://www.youtube.com/watch?v=" | |
# | |
# st.markdown("Paper: " + paper_link, unsafe_allow_html=True) | |
# st.markdown("Code: " + paper_link, unsafe_allow_html=True) | |
# st.markdown("Page: " + paper_link, unsafe_allow_html=True) | |
# st.markdown("Please see this video for instructions on how to use this tool: " + instructions_video, unsafe_allow_html=True) | |
st.title("Result Analysis Tool") | |
dataset_cfg_path = os.path.join("cfg", "dataset") | |
model_cfg_path = os.path.join("cfg", "model") | |
metric_cfg_path = os.path.join("cfg", "metric") | |
viz_cfg_path = os.path.join("cfg", "viz") | |
datasets = get_configs(dataset_cfg_path) | |
models = get_configs(model_cfg_path) | |
metrics = get_configs(metric_cfg_path) | |
vizs = get_configs(viz_cfg_path) | |
dataset_display_names = get_display_names(datasets) | |
model_display_names = get_display_names(models) | |
metric_display_names = get_display_names(metrics) | |
viz_display_names = get_display_names(vizs) | |
assert len(set(dataset_display_names)) == len(dataset_display_names), "Dataset display names are not unique" | |
assert len(set(model_display_names)) == len(model_display_names), "Model display names are not unique" | |
assert len(set(metric_display_names)) == len(metric_display_names), "Metric display names are not unique" | |
assert len(set(viz_display_names)) == len(viz_display_names), "Viz display names are not unique" | |
selected_model_names = st.multiselect('Select multiple methods to compare', model_display_names) | |
selected_models = [model for model in models if model['display_name'] in selected_model_names] | |
col1, col2 = st.columns(2) | |
with col1: | |
selected_dataset_name = st.selectbox('Select dataset', options=dataset_display_names) | |
selected_dataset = [dataset for dataset in datasets if dataset['display_name'] == selected_dataset_name][0] | |
with col2: | |
selected_sequence = st.selectbox('Select sequence', options=selected_dataset["sequences"].keys()) | |
usable_metrics = [metric for metric in metrics if metric['no_ref'] == selected_dataset['no_ref']] | |
usable_metric_display_names = get_display_names(usable_metrics) | |
selected_metric_names = st.multiselect('Select metrics to display', usable_metric_display_names) | |
selected_metrics = [metric for metric in usable_metrics if metric['display_name'] in selected_metric_names] | |
selected_viz = st.multiselect('Select other visualizations to display', viz_display_names) | |
selected_visualizations = [viz for viz in vizs if viz['display_name'] in selected_viz] | |
if not st.button('Get Results'): | |
st.stop() | |
# num_gt_column = 1 if len(x.intersection(y)) > 0 else 0 | |
# | |
# num_columns = len(selected_pretrained_model_names) + 1 | |