File size: 5,991 Bytes
8c31b90
95312c3
8c31b90
df9abf4
 
95312c3
df9abf4
 
 
 
 
 
8c31b90
df9abf4
 
 
 
8c31b90
df9abf4
 
 
0d0ab89
 
95312c3
 
8c31b90
 
 
 
 
 
 
 
0d0ab89
df9abf4
8c31b90
 
 
0d0ab89
df9abf4
8c31b90
 
 
 
df9abf4
8c31b90
 
 
 
df9abf4
 
8c31b90
 
df9abf4
 
8c31b90
df9abf4
8c31b90
 
df9abf4
8c31b90
 
df9abf4
c103e03
 
 
 
 
 
 
0d0ab89
df9abf4
 
8c31b90
 
0d0ab89
 
 
 
c103e03
95312c3
0d0ab89
 
95312c3
c103e03
 
 
 
 
 
0d0ab89
c103e03
95312c3
 
 
 
 
0d0ab89
95312c3
c103e03
 
95312c3
 
 
0d0ab89
95312c3
 
 
 
0d0ab89
c103e03
95312c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import subprocess

import streamlit as st

from utils import get_configs, get_display_names, get_path_for_viz, Layout

# st.header("EVREAL  - Event-based Video Reconstruction Evaluation and Analysis Library")
#
# paper_link = "https://arxiv.org/abs/2305.00434"
# code_link = "https://github.com/ercanburak/EVREAL"
# page_link = "https://ercanburak.github.io/evreal.html"
# instructions_video = "https://www.youtube.com/watch?v="
#
# st.markdown("Paper: " + paper_link, unsafe_allow_html=True)
# st.markdown("Code: " + paper_link, unsafe_allow_html=True)
# st.markdown("Page: " + paper_link, unsafe_allow_html=True)
# st.markdown("Please see this video for instructions on how to use this tool: " + instructions_video, unsafe_allow_html=True)

st.title("Result Analysis Tool")

data_base_path = "/home/bercan/ebv/evreal_data"

font_path = "font/Ubuntu-B.ttf"

dataset_cfg_path = os.path.join("cfg", "dataset")
model_cfg_path = os.path.join("cfg", "model")
metric_cfg_path = os.path.join("cfg", "metric")
viz_cfg_path = os.path.join("cfg", "viz")

datasets = get_configs(dataset_cfg_path)
models = get_configs(model_cfg_path)
metrics = get_configs(metric_cfg_path)
visualizations = get_configs(viz_cfg_path)

dataset_display_names = get_display_names(datasets)
model_display_names = get_display_names(models)
metric_display_names = get_display_names(metrics)
viz_display_names = get_display_names(visualizations)

assert len(set(dataset_display_names)) == len(dataset_display_names), "Dataset display names are not unique"
assert len(set(model_display_names)) == len(model_display_names), "Model display names are not unique"
assert len(set(metric_display_names)) == len(metric_display_names), "Metric display names are not unique"
assert len(set(viz_display_names)) == len(viz_display_names), "Viz display names are not unique"

selected_model_names = st.multiselect('Select multiple methods to compare', model_display_names)
selected_models = [model for model in models if model['display_name'] in selected_model_names]

col1, col2 = st.columns(2)

with col1:
    selected_dataset_name = st.selectbox('Select dataset', options=dataset_display_names)
    selected_dataset = [dataset for dataset in datasets if dataset['display_name'] == selected_dataset_name][0]

with col2:
    selected_sequence = st.selectbox('Select sequence', options=selected_dataset["sequences"].keys())

usable_metrics = [metric for metric in metrics if metric['no_ref'] == selected_dataset['no_ref']]
usable_metric_display_names = get_display_names(usable_metrics)

selected_metric_names = st.multiselect('Select metrics to display', usable_metric_display_names)
selected_metrics = [metric for metric in usable_metrics if metric['display_name'] in selected_metric_names]

if not selected_dataset['has_frames']:
    usable_viz = [viz for viz in visualizations if viz['gt_type'] != 'frame']
else:
    usable_viz = visualizations
usable_viz_display_names = get_display_names(usable_viz)

selected_viz = st.multiselect('Select other visualizations to display', usable_viz_display_names)
selected_visualizations = [viz for viz in visualizations if viz['display_name'] in selected_viz]

if not st.button('Get Results'):
    st.stop()

gt_only_viz = [viz for viz in selected_visualizations if viz['viz_type'] == 'gt_only']
model_only_viz = [viz for viz in selected_visualizations if viz['viz_type'] == 'model_only']
both_viz = [viz for viz in selected_visualizations if viz['viz_type'] == 'both']

recon_viz = {"name": "recon", "display_name": "Reconstruction", "viz_type": "both", "gt_type": "frame"}
# ground_truth = {"name": "gt", "display_name": "Ground Truth", "model_id": "groundtruth"}

model_viz = [recon_viz] + both_viz + selected_metrics + model_only_viz
num_model_rows = len(model_viz)

gt_viz = []
if selected_dataset['has_frames']:
    gt_viz.append(recon_viz)
    gt_viz.extend([viz for viz in both_viz if viz['gt_type'] == 'frame'])
    gt_viz.extend([viz for viz in gt_only_viz if viz['gt_type'] == 'frame'])

gt_viz.extend([viz for viz in both_viz if viz['gt_type'] == 'event'])
gt_viz.extend([viz for viz in gt_only_viz if viz['gt_type'] == 'event'])

# print(get_display_names(model_viz))
# print(get_display_names(gt_viz))
# st.stop()

num_gt_rows = len(gt_viz)
num_rows = max(num_model_rows, num_gt_rows)

num_model_columns = len(selected_models)

num_elements = num_rows * num_model_columns

layout = Layout(num_rows, num_model_columns)
layout_str = layout.get_layout_str()

video_paths = []
for row_idx in range(num_rows):
    for col_idx in range(num_model_columns):
        video_path = get_path_for_viz(data_base_path, selected_dataset, selected_sequence,
                                      selected_models[col_idx], model_viz[row_idx])
        print(video_path)
        video_paths.append(video_path)
#         if os.path.isfile(video_path):
#             video_paths.append(video_path)
#         else:
#             print("Video path does not exist: " + video_path)
#
# assert len(video_paths) == num_elements, "Number of video paths is not equal to expected number of elements"

inputs_str = " ".join(["-i " + video_path for video_path in video_paths])

crop_str = "crop=trunc(iw/2)*2:trunc(ih/2)*2"

w = selected_dataset["width"]
input_scaling_parts = []
xstack_input_parts = []
for i in range(num_elements):
    input_scaling_part = "[{}:v]scale={}:-1,{}[v{}]".format(i, w, crop_str, i)
    input_scaling_parts.append(input_scaling_part)
    xstack_input_part = "[v{}]".format(i)
    xstack_input_parts.append(xstack_input_part)
input_scaling_str = ";".join(input_scaling_parts)
xstack_input_str = "".join(xstack_input_parts)



# opt = "-c:v libx264 -preset veryslow -crf 18 -c:a copy"
opt = ""
ffmpeg_command_str = "ffmpeg -y " + inputs_str + " -filter_complex \"" + input_scaling_str + ";" + xstack_input_str + "xstack=inputs=" + str(num_elements) + ":layout=" + layout_str + "\"" + opt + " output.mp4"
print(ffmpeg_command_str)
subprocess.call(ffmpeg_command_str, shell=True)