Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,17 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
-
from transformers import pipeline
|
4 |
from PIL import Image
|
5 |
from PyPDF2 import PdfReader
|
6 |
from reportlab.lib.pagesizes import letter
|
7 |
from reportlab.pdfgen import canvas
|
8 |
|
9 |
-
# Load
|
10 |
ocr_model = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
11 |
|
12 |
-
# Load
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
|
17 |
# Function to extract text from images or PDFs
|
18 |
def extract_text(file_path):
|
@@ -28,62 +27,69 @@ def extract_text(file_path):
|
|
28 |
except Exception as e:
|
29 |
return f"Error processing the file: {e}"
|
30 |
|
31 |
-
# Function to
|
32 |
-
def
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
c.drawString(100, y_position, line)
|
39 |
-
y_position -= 20
|
40 |
-
c.save()
|
41 |
-
return output_path
|
42 |
|
43 |
-
#
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
try:
|
46 |
-
# Step 1: Extract text
|
47 |
extracted_text = extract_text(file)
|
48 |
if not extracted_text.strip():
|
49 |
return "No readable text found in the uploaded file.", None
|
50 |
|
51 |
-
# Step 2:
|
52 |
-
|
53 |
-
outputs = model(**inputs)
|
54 |
-
|
55 |
-
# Step 3: Process logits and generate meaningful labels
|
56 |
-
logits = outputs.logits
|
57 |
-
predictions = logits.softmax(dim=-1)
|
58 |
|
59 |
-
#
|
60 |
-
|
61 |
-
for i, score in enumerate(predictions[0]):
|
62 |
-
token = tokenizer.decode([i]).strip()
|
63 |
-
if token not in ["[PAD]", "[unused1]"]: # Filter out invalid tokens
|
64 |
-
analysis_report += f"- {token}: {score.item():.2f}\n"
|
65 |
|
66 |
-
# Step
|
67 |
-
output_pdf = "
|
68 |
-
create_pdf_report(
|
69 |
|
70 |
-
return
|
71 |
except Exception as e:
|
72 |
return f"Error processing file: {e}", None
|
73 |
|
74 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
interface = gr.Interface(
|
76 |
-
fn=
|
77 |
-
inputs=gr.File(label="Upload your
|
78 |
outputs=[
|
79 |
-
gr.Textbox(label="
|
80 |
gr.File(label="Download PDF Report")
|
81 |
],
|
82 |
-
title="
|
83 |
description=(
|
84 |
-
"Upload your
|
85 |
-
"The app will extract
|
86 |
-
"
|
87 |
),
|
88 |
allow_flagging="never"
|
89 |
)
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
|
|
3 |
from PIL import Image
|
4 |
from PyPDF2 import PdfReader
|
5 |
from reportlab.lib.pagesizes import letter
|
6 |
from reportlab.pdfgen import canvas
|
7 |
|
8 |
+
# Load OCR model for extracting text from images
|
9 |
ocr_model = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
10 |
|
11 |
+
# Load medical AI model (BioGPT or similar) for prescription validation
|
12 |
+
medical_model_name = "microsoft/BioGPT"
|
13 |
+
medical_tokenizer = AutoTokenizer.from_pretrained(medical_model_name)
|
14 |
+
medical_model = AutoModelForSequenceClassification.from_pretrained(medical_model_name)
|
15 |
|
16 |
# Function to extract text from images or PDFs
|
17 |
def extract_text(file_path):
|
|
|
27 |
except Exception as e:
|
28 |
return f"Error processing the file: {e}"
|
29 |
|
30 |
+
# Function to validate prescription using the medical model
|
31 |
+
def validate_prescription_with_model(extracted_text):
|
32 |
+
# Tokenize and process with the AI model
|
33 |
+
inputs = medical_tokenizer(extracted_text, return_tensors="pt", truncation=True, padding=True)
|
34 |
+
outputs = medical_model(**inputs)
|
35 |
+
logits = outputs.logits
|
36 |
+
predictions = logits.softmax(dim=-1)
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
# Generate model-driven validation results
|
39 |
+
validation_report = "π Prescription Validation Results:\n"
|
40 |
+
for i, score in enumerate(predictions[0]):
|
41 |
+
token = medical_tokenizer.decode([i]).strip()
|
42 |
+
if token not in ["[PAD]", "[unused1]"]: # Ignore invalid tokens
|
43 |
+
validation_report += f"- {token}: {score.item():.2f}\n"
|
44 |
+
return validation_report
|
45 |
+
|
46 |
+
# Main function to handle prescription analysis
|
47 |
+
def analyze_prescription(file):
|
48 |
try:
|
49 |
+
# Step 1: Extract text
|
50 |
extracted_text = extract_text(file)
|
51 |
if not extracted_text.strip():
|
52 |
return "No readable text found in the uploaded file.", None
|
53 |
|
54 |
+
# Step 2: Validate prescription using AI model
|
55 |
+
validation_report = validate_prescription_with_model(extracted_text)
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
# Combine the extracted text and validation results
|
58 |
+
full_report = f"Extracted Text:\n{extracted_text}\n\n{validation_report}"
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
# Step 3: Generate a PDF report
|
61 |
+
output_pdf = "prescription_validation_report.pdf"
|
62 |
+
create_pdf_report(full_report, output_pdf)
|
63 |
|
64 |
+
return full_report, output_pdf
|
65 |
except Exception as e:
|
66 |
return f"Error processing file: {e}", None
|
67 |
|
68 |
+
# Function to create a PDF report
|
69 |
+
def create_pdf_report(content, output_path):
|
70 |
+
c = canvas.Canvas(output_path, pagesize=letter)
|
71 |
+
c.drawString(100, 750, "Prescription Validation Report")
|
72 |
+
c.drawString(100, 730, "------------------------------")
|
73 |
+
y_position = 700
|
74 |
+
for line in content.split("\n"):
|
75 |
+
c.drawString(100, y_position, line)
|
76 |
+
y_position -= 20
|
77 |
+
c.save()
|
78 |
+
return output_path
|
79 |
+
|
80 |
+
# Gradio interface
|
81 |
interface = gr.Interface(
|
82 |
+
fn=analyze_prescription,
|
83 |
+
inputs=gr.File(label="Upload your Prescription (PNG, JPG, JPEG, or PDF)"),
|
84 |
outputs=[
|
85 |
+
gr.Textbox(label="Validation Results"),
|
86 |
gr.File(label="Download PDF Report")
|
87 |
],
|
88 |
+
title="AI-Powered Prescription Validator",
|
89 |
description=(
|
90 |
+
"Upload your medical prescription in image (PNG, JPG, JPEG) or PDF format. "
|
91 |
+
"The app will extract the text, analyze it using advanced AI models, and validate the prescription. "
|
92 |
+
"Download a comprehensive PDF report of the validation results."
|
93 |
),
|
94 |
allow_flagging="never"
|
95 |
)
|