Spaces:
Configuration error

englert commited on
Commit
e52fc81
·
1 Parent(s): 1865e20

update app.py # 2

Browse files
Files changed (1) hide show
  1. app.py +7 -4
app.py CHANGED
@@ -22,14 +22,17 @@ model.load_state_dict(torch.load("model.pt"))
22
  model.eval()
23
  avg_pool = torch.nn.AdaptiveAvgPool2d((1, 1))
24
 
 
25
  def predict(input_file, downsample_size):
 
26
  base_directory = os.getcwd()
27
  selected_directory = os.path.join(base_directory, "selected_images")
28
  if os.path.isdir(selected_directory):
29
  shutil.rmtree(selected_directory)
30
  os.mkdir(selected_directory)
31
 
32
- zip_path = os.path.join(selected_directory, input_file.split('/')[-1][:-4] + ".zip")
 
33
 
34
  mean = np.asarray([0.3156024, 0.33569682, 0.34337464], dtype=np.float32)
35
  std = np.asarray([0.16568947, 0.17827448, 0.18925823], dtype=np.float32)
@@ -85,9 +88,9 @@ demo = gr.Interface(
85
  enable_queue=True,
86
  title="Frame selection by visual difference",
87
  fn=predict,
88
- inputs=[gr.components.Video(label="Upload Video File"),
89
- gr.components.Number(label="Downsample size", precision=0)],
90
- outputs=gr.components.File(label="Zip"),
91
  )
92
 
93
  demo.launch(debug=True)
 
22
  model.eval()
23
  avg_pool = torch.nn.AdaptiveAvgPool2d((1, 1))
24
 
25
+
26
  def predict(input_file, downsample_size):
27
+ downsample_size = int(downsample_size)
28
  base_directory = os.getcwd()
29
  selected_directory = os.path.join(base_directory, "selected_images")
30
  if os.path.isdir(selected_directory):
31
  shutil.rmtree(selected_directory)
32
  os.mkdir(selected_directory)
33
 
34
+ file_name = (input_file.split('/')[-1]).split('.')[-1]
35
+ zip_path = os.path.join(selected_directory, file_name + ".zip")
36
 
37
  mean = np.asarray([0.3156024, 0.33569682, 0.34337464], dtype=np.float32)
38
  std = np.asarray([0.16568947, 0.17827448, 0.18925823], dtype=np.float32)
 
88
  enable_queue=True,
89
  title="Frame selection by visual difference",
90
  fn=predict,
91
+ inputs=[gr.inputs.Video(label="Upload Video File"),
92
+ gr.inputs.Number(label="Downsample size")],
93
+ outputs=gr.outputs.File(label="Zip"),
94
  )
95
 
96
  demo.launch(debug=True)