Spaces:
Configuration error

englert commited on
Commit
c070174
·
1 Parent(s): e52fc81

update app.py # 3

Browse files
Files changed (1) hide show
  1. app.py +26 -23
app.py CHANGED
@@ -37,29 +37,32 @@ def predict(input_file, downsample_size):
37
  mean = np.asarray([0.3156024, 0.33569682, 0.34337464], dtype=np.float32)
38
  std = np.asarray([0.16568947, 0.17827448, 0.18925823], dtype=np.float32)
39
 
40
- img_vecs = []
41
- with torch.no_grad():
42
- for fp_i, file_path in enumerate([input_file]):
43
- for i, in_img in enumerate(video_reader(file_path,
44
- targetFPS=9,
45
- targetWidth=100,
46
- to_rgb=True)):
47
- in_img = (in_img.astype(np.float32) / 255.)
48
- in_img = (in_img - mean) / std
49
- in_img = np.expand_dims(in_img, 0)
50
- in_img = np.transpose(in_img, (0, 3, 1, 2))
51
- in_img = torch.from_numpy(in_img).float()
52
- encoded = avg_pool(model(in_img))[0, :, 0, 0].cpu().numpy()
53
- img_vecs += [encoded]
54
- img_vecs = np.asarray(img_vecs)
55
- print("images encoded")
56
- rv_indices, _ = furthest_neighbours(
57
- x=img_vecs,
58
- downsample_size=downsample_size,
59
- seed=0)
60
- indices = np.zeros((img_vecs.shape[0],))
61
- indices[np.asarray(rv_indices)] = 1
62
- print("images selected")
 
 
 
63
 
64
  global_ctr = 0
65
  for fp_i, file_path in enumerate([input_file]):
 
37
  mean = np.asarray([0.3156024, 0.33569682, 0.34337464], dtype=np.float32)
38
  std = np.asarray([0.16568947, 0.17827448, 0.18925823], dtype=np.float32)
39
 
40
+ # img_vecs = []
41
+ # with torch.no_grad():
42
+ # for fp_i, file_path in enumerate([input_file]):
43
+ # for i, in_img in enumerate(video_reader(file_path,
44
+ # targetFPS=9,
45
+ # targetWidth=100,
46
+ # to_rgb=True)):
47
+ # in_img = (in_img.astype(np.float32) / 255.)
48
+ # in_img = (in_img - mean) / std
49
+ # in_img = np.expand_dims(in_img, 0)
50
+ # in_img = np.transpose(in_img, (0, 3, 1, 2))
51
+ # in_img = torch.from_numpy(in_img).float()
52
+ # encoded = avg_pool(model(in_img))[0, :, 0, 0].cpu().numpy()
53
+ # img_vecs += [encoded]
54
+ # img_vecs = np.asarray(img_vecs)
55
+ # print("images encoded")
56
+ # rv_indices, _ = furthest_neighbours(
57
+ # x=img_vecs,
58
+ # downsample_size=downsample_size,
59
+ # seed=0)
60
+ # indices = np.zeros((img_vecs.shape[0],))
61
+ # indices[np.asarray(rv_indices)] = 1
62
+ # print("images selected")
63
+
64
+ indices = [0] * 1000
65
+ indices[0] = 1
66
 
67
  global_ctr = 0
68
  for fp_i, file_path in enumerate([input_file]):