Spaces:
Configuration error
Configuration error
# import os | |
# import shutil | |
# import zipfile | |
# from os.path import join, isfile, basename | |
# | |
# import cv2 | |
# import numpy as np | |
import gradio as gr | |
# import torch | |
# from resnet50 import resnet18 | |
# from sampling_util import furthest_neighbours | |
# from video_reader import video_reader | |
# | |
# model = resnet18( | |
# output_dim=0, | |
# nmb_prototypes=0, | |
# eval_mode=True, | |
# hidden_mlp=0, | |
# normalize=False) | |
# model.load_state_dict(torch.load("model.pt")) | |
# model.eval() | |
# avg_pool = torch.nn.AdaptiveAvgPool2d((1, 1)) | |
def predict(input_file, downsample_size): | |
# downsample_size = int(downsample_size) | |
# base_directory = os.getcwd() | |
# selected_directory = os.path.join(base_directory, "selected_images") | |
# if os.path.isdir(selected_directory): | |
# shutil.rmtree(selected_directory) | |
# os.mkdir(selected_directory) | |
# | |
# file_name = (input_file.split('/')[-1]).split('.')[-1] | |
# zip_path = os.path.join(selected_directory, file_name + ".zip") | |
# | |
# mean = np.asarray([0.3156024, 0.33569682, 0.34337464], dtype=np.float32) | |
# std = np.asarray([0.16568947, 0.17827448, 0.18925823], dtype=np.float32) | |
# img_vecs = [] | |
# with torch.no_grad(): | |
# for fp_i, file_path in enumerate([input_file]): | |
# for i, in_img in enumerate(video_reader(file_path, | |
# targetFPS=9, | |
# targetWidth=100, | |
# to_rgb=True)): | |
# in_img = (in_img.astype(np.float32) / 255.) | |
# in_img = (in_img - mean) / std | |
# in_img = np.expand_dims(in_img, 0) | |
# in_img = np.transpose(in_img, (0, 3, 1, 2)) | |
# in_img = torch.from_numpy(in_img).float() | |
# encoded = avg_pool(model(in_img))[0, :, 0, 0].cpu().numpy() | |
# img_vecs += [encoded] | |
# img_vecs = np.asarray(img_vecs) | |
# print("images encoded") | |
# rv_indices, _ = furthest_neighbours( | |
# x=img_vecs, | |
# downsample_size=downsample_size, | |
# seed=0) | |
# indices = np.zeros((img_vecs.shape[0],)) | |
# indices[np.asarray(rv_indices)] = 1 | |
# print("images selected") | |
# global_ctr = 0 | |
# for fp_i, file_path in enumerate([input_file]): | |
# for i, img in enumerate(video_reader(file_path, | |
# targetFPS=9, | |
# targetWidth=None, | |
# to_rgb=False)): | |
# if indices[global_ctr] == 1: | |
# cv2.imwrite(join(selected_directory, str(global_ctr) + ".jpg"), img) | |
# global_ctr += 1 | |
# print("selected images extracted") | |
# | |
# all_selected_imgs_path = [join(selected_directory, f) for f in os.listdir(selected_directory) if | |
# isfile(join(selected_directory, f))] | |
zip_path = "asd.zip" | |
# zipf = zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) | |
# # for i, f in enumerate(all_selected_imgs_path): | |
# # zipf.write(f, basename(f)) | |
# zipf.close() | |
# print("selected images zipped") | |
return zip_path | |
demo = gr.Interface( | |
enable_queue=True, | |
title="Frame selection by visual difference", | |
fn=predict, | |
inputs=[gr.inputs.Video(label="Upload Video File"), | |
gr.inputs.Number(label="Downsample size")], | |
outputs=gr.outputs.File(label="Zip"), | |
) | |
demo.launch(debug=True) | |