# import os # import shutil # import zipfile # from os.path import join, isfile, basename # # import cv2 # import numpy as np import gradio as gr # import torch # from resnet50 import resnet18 # from sampling_util import furthest_neighbours # from video_reader import video_reader # # model = resnet18( # output_dim=0, # nmb_prototypes=0, # eval_mode=True, # hidden_mlp=0, # normalize=False) # model.load_state_dict(torch.load("model.pt")) # model.eval() # avg_pool = torch.nn.AdaptiveAvgPool2d((1, 1)) def predict(input_file, downsample_size): # downsample_size = int(downsample_size) # base_directory = os.getcwd() # selected_directory = os.path.join(base_directory, "selected_images") # if os.path.isdir(selected_directory): # shutil.rmtree(selected_directory) # os.mkdir(selected_directory) # # file_name = (input_file.split('/')[-1]).split('.')[-1] # zip_path = os.path.join(selected_directory, file_name + ".zip") # # mean = np.asarray([0.3156024, 0.33569682, 0.34337464], dtype=np.float32) # std = np.asarray([0.16568947, 0.17827448, 0.18925823], dtype=np.float32) # img_vecs = [] # with torch.no_grad(): # for fp_i, file_path in enumerate([input_file]): # for i, in_img in enumerate(video_reader(file_path, # targetFPS=9, # targetWidth=100, # to_rgb=True)): # in_img = (in_img.astype(np.float32) / 255.) # in_img = (in_img - mean) / std # in_img = np.expand_dims(in_img, 0) # in_img = np.transpose(in_img, (0, 3, 1, 2)) # in_img = torch.from_numpy(in_img).float() # encoded = avg_pool(model(in_img))[0, :, 0, 0].cpu().numpy() # img_vecs += [encoded] # img_vecs = np.asarray(img_vecs) # print("images encoded") # rv_indices, _ = furthest_neighbours( # x=img_vecs, # downsample_size=downsample_size, # seed=0) # indices = np.zeros((img_vecs.shape[0],)) # indices[np.asarray(rv_indices)] = 1 # print("images selected") # global_ctr = 0 # for fp_i, file_path in enumerate([input_file]): # for i, img in enumerate(video_reader(file_path, # targetFPS=9, # targetWidth=None, # to_rgb=False)): # if indices[global_ctr] == 1: # cv2.imwrite(join(selected_directory, str(global_ctr) + ".jpg"), img) # global_ctr += 1 # print("selected images extracted") # # all_selected_imgs_path = [join(selected_directory, f) for f in os.listdir(selected_directory) if # isfile(join(selected_directory, f))] zip_path = "asd.zip" # zipf = zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) # # for i, f in enumerate(all_selected_imgs_path): # # zipf.write(f, basename(f)) # zipf.close() # print("selected images zipped") return zip_path demo = gr.Interface( enable_queue=True, title="Frame selection by visual difference", fn=predict, inputs=[gr.inputs.Video(label="Upload Video File"), gr.inputs.Number(label="Downsample size")], outputs=gr.outputs.File(label="Zip"), ) demo.launch(debug=True)