Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import torch
|
|
3 |
from datasets import load_dataset
|
4 |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
5 |
import soundfile as sf
|
|
|
6 |
|
7 |
# Load the fine-tuned model, processor, and vocoder
|
8 |
model_name = "microsoft/speecht5_tts"
|
@@ -10,16 +11,15 @@ processor = SpeechT5Processor.from_pretrained(model_name)
|
|
10 |
model = SpeechT5ForTextToSpeech.from_pretrained("emirhanbilgic/speecht5_finetuned_emirhan_tr")
|
11 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
12 |
|
13 |
-
# Load speaker embeddings
|
14 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
15 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
16 |
|
17 |
-
|
18 |
def text_to_speech(text):
|
19 |
inputs = processor(text=text, return_tensors="pt")
|
20 |
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
21 |
-
|
22 |
-
return
|
23 |
|
24 |
# Create Gradio interface
|
25 |
iface = gr.Interface(
|
|
|
3 |
from datasets import load_dataset
|
4 |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
5 |
import soundfile as sf
|
6 |
+
import numpy as np
|
7 |
|
8 |
# Load the fine-tuned model, processor, and vocoder
|
9 |
model_name = "microsoft/speecht5_tts"
|
|
|
11 |
model = SpeechT5ForTextToSpeech.from_pretrained("emirhanbilgic/speecht5_finetuned_emirhan_tr")
|
12 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
13 |
|
14 |
+
# Load speaker embeddings
|
15 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
16 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
17 |
|
|
|
18 |
def text_to_speech(text):
|
19 |
inputs = processor(text=text, return_tensors="pt")
|
20 |
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
21 |
+
speech_numpy = speech.numpy()
|
22 |
+
return (16000, speech_numpy) # Return sample rate and numpy array
|
23 |
|
24 |
# Create Gradio interface
|
25 |
iface = gr.Interface(
|