emilylearning commited on
Commit
08879a1
·
1 Parent(s): a43a76a

format file and remove share=True

Browse files
Files changed (1) hide show
  1. app.py +59 -31
app.py CHANGED
@@ -31,6 +31,7 @@ for bert_like in MODEL_NAMES:
31
 
32
  # %%
33
 
 
34
  def clean_tokens(tokens):
35
  return [token.strip() for token in tokens]
36
 
@@ -61,8 +62,6 @@ def get_avg_prob_from_pipeline_outputs(mask_filled_text, gendered_token, num_pre
61
  return round(sum(pronoun_preds) / (EPS + num_preds) * 100, DECIMAL_PLACES)
62
 
63
 
64
-
65
-
66
  def get_figure(df, gender, n_fit=1):
67
  df = df.set_index("x-axis")
68
  cols = df.columns
@@ -75,16 +74,16 @@ def get_figure(df, gender, n_fit=1):
75
 
76
  # find stackoverflow reference
77
  p, C_p = np.polyfit(xs, ys, n_fit, cov=1)
78
- t = np.linspace(min(xs)-1, max(xs)+1, 10*len(xs))
79
- TT = np.vstack([t**(n_fit-i) for i in range(n_fit+1)]).T
80
 
81
  # matrix multiplication calculates the polynomial values
82
  yi = np.dot(TT, p)
83
  C_yi = np.dot(TT, np.dot(C_p, TT.T)) # C_y = TT*C_z*TT.T
84
  sig_yi = np.sqrt(np.diag(C_yi)) # Standard deviations are sqrt of diagonal
85
 
86
- ax.fill_between(t, yi+sig_yi, yi-sig_yi, alpha=.25)
87
- ax.plot(t, yi, '-')
88
  ax.plot(df, "ro")
89
  ax.legend(list(df.columns))
90
 
@@ -97,7 +96,6 @@ def get_figure(df, gender, n_fit=1):
97
  return fig
98
 
99
 
100
-
101
  # %%
102
  def predict_masked_tokens(
103
  model_name,
@@ -185,34 +183,33 @@ def predict_masked_tokens(
185
 
186
  truck_fn_example = [
187
  MODEL_NAMES[2],
188
- '',
189
- ', '.join(['truck', 'pickup']),
190
- ', '.join(['car', 'sedan']),
191
- ', '.join(['city','neighborhood','farm']),
192
- 'PLACE',
193
  "True",
194
  1,
195
  ]
 
 
196
  def truck_1_fn():
197
- return truck_fn_example + [
198
- 'He loaded up his truck and drove to the PLACE.'
199
- ]
200
 
201
  def truck_2_fn():
202
  return truck_fn_example + [
203
- 'He loaded up the bed of his truck and drove to the PLACE.'
204
  ]
205
 
206
 
207
  # # %%
208
 
209
 
210
-
211
  demo = gr.Blocks()
212
  with demo:
213
  gr.Markdown("# Spurious Correlation Evaluation for Pre-trained LLMs")
214
 
215
-
216
  gr.Markdown("## Instructions for this Demo")
217
  gr.Markdown(
218
  "1) Click on one of the examples below to pre-populate the input fields."
@@ -224,8 +221,8 @@ with demo:
224
  "3) Repeat steps (1) and (2) with more pre-populated inputs or with your own values in the input fields!"
225
  )
226
 
227
-
228
- gr.Markdown("""The pre-populated inputs below are for a demo example of a location-vs-vehicle-type spurious correlation.
229
  We can see this spurious correlation largely disappears in the well-specified example text.
230
 
231
  <p align="center">
@@ -236,18 +233,25 @@ with demo:
236
  <p align="center">
237
  <img src="file/well_spec.png" alt="results" width="300"/>
238
  </p>
239
- """)
 
240
 
241
  gr.Markdown("## Example inputs")
242
  gr.Markdown(
243
  "Click a button below to pre-populate input fields with example values. Then scroll down to Hit Submit to generate predictions."
244
  )
245
  with gr.Row():
246
- truck_1_gen = gr.Button("Click for non-well-specified(?) vehicle-type example inputs")
247
- gr.Markdown("<-- Multiple solutions with low training error. LLM sensitive to spurious(?) correlations.")
 
 
 
 
248
 
249
  truck_2_gen = gr.Button("Click for well-specified vehicle-type example inputs")
250
- gr.Markdown("<-- Fewer solutions with low training error. LLM less sensitive to spurious(?) correlations.")
 
 
251
 
252
  gr.Markdown("## Input fields")
253
  gr.Markdown(
@@ -343,11 +347,37 @@ with demo:
343
  )
344
 
345
  with gr.Row():
346
- truck_1_gen.click(truck_1_fn, inputs=[], outputs=[model_name, own_model_name, group_a_tokens, group_b_tokens,
347
- x_axis, place_holder, to_normalize, n_fit, input_text])
 
 
 
 
 
 
 
 
 
 
 
 
 
348
 
349
- truck_2_gen.click(truck_2_fn, inputs=[], outputs=[model_name, own_model_name, group_a_tokens, group_b_tokens,
350
- x_axis, place_holder, to_normalize, n_fit, input_text])
 
 
 
 
 
 
 
 
 
 
 
 
 
351
 
352
  btn.click(
353
  predict_masked_tokens,
@@ -365,8 +395,6 @@ with demo:
365
  outputs=[sample_text, female_fig, male_fig, df],
366
  )
367
 
368
- demo.launch(debug=True, share=True)
369
 
370
  # %%
371
-
372
-
 
31
 
32
  # %%
33
 
34
+
35
  def clean_tokens(tokens):
36
  return [token.strip() for token in tokens]
37
 
 
62
  return round(sum(pronoun_preds) / (EPS + num_preds) * 100, DECIMAL_PLACES)
63
 
64
 
 
 
65
  def get_figure(df, gender, n_fit=1):
66
  df = df.set_index("x-axis")
67
  cols = df.columns
 
74
 
75
  # find stackoverflow reference
76
  p, C_p = np.polyfit(xs, ys, n_fit, cov=1)
77
+ t = np.linspace(min(xs) - 1, max(xs) + 1, 10 * len(xs))
78
+ TT = np.vstack([t ** (n_fit - i) for i in range(n_fit + 1)]).T
79
 
80
  # matrix multiplication calculates the polynomial values
81
  yi = np.dot(TT, p)
82
  C_yi = np.dot(TT, np.dot(C_p, TT.T)) # C_y = TT*C_z*TT.T
83
  sig_yi = np.sqrt(np.diag(C_yi)) # Standard deviations are sqrt of diagonal
84
 
85
+ ax.fill_between(t, yi + sig_yi, yi - sig_yi, alpha=0.25)
86
+ ax.plot(t, yi, "-")
87
  ax.plot(df, "ro")
88
  ax.legend(list(df.columns))
89
 
 
96
  return fig
97
 
98
 
 
99
  # %%
100
  def predict_masked_tokens(
101
  model_name,
 
183
 
184
  truck_fn_example = [
185
  MODEL_NAMES[2],
186
+ "",
187
+ ", ".join(["truck", "pickup"]),
188
+ ", ".join(["car", "sedan"]),
189
+ ", ".join(["city", "neighborhood", "farm"]),
190
+ "PLACE",
191
  "True",
192
  1,
193
  ]
194
+
195
+
196
  def truck_1_fn():
197
+ return truck_fn_example + ["He loaded up his truck and drove to the PLACE."]
198
+
 
199
 
200
  def truck_2_fn():
201
  return truck_fn_example + [
202
+ "He loaded up the bed of his truck and drove to the PLACE."
203
  ]
204
 
205
 
206
  # # %%
207
 
208
 
 
209
  demo = gr.Blocks()
210
  with demo:
211
  gr.Markdown("# Spurious Correlation Evaluation for Pre-trained LLMs")
212
 
 
213
  gr.Markdown("## Instructions for this Demo")
214
  gr.Markdown(
215
  "1) Click on one of the examples below to pre-populate the input fields."
 
221
  "3) Repeat steps (1) and (2) with more pre-populated inputs or with your own values in the input fields!"
222
  )
223
 
224
+ gr.Markdown(
225
+ """The pre-populated inputs below are for a demo example of a location-vs-vehicle-type spurious correlation.
226
  We can see this spurious correlation largely disappears in the well-specified example text.
227
 
228
  <p align="center">
 
233
  <p align="center">
234
  <img src="file/well_spec.png" alt="results" width="300"/>
235
  </p>
236
+ """
237
+ )
238
 
239
  gr.Markdown("## Example inputs")
240
  gr.Markdown(
241
  "Click a button below to pre-populate input fields with example values. Then scroll down to Hit Submit to generate predictions."
242
  )
243
  with gr.Row():
244
+ truck_1_gen = gr.Button(
245
+ "Click for non-well-specified(?) vehicle-type example inputs"
246
+ )
247
+ gr.Markdown(
248
+ "<-- Multiple solutions with low training error. LLM sensitive to spurious(?) correlations."
249
+ )
250
 
251
  truck_2_gen = gr.Button("Click for well-specified vehicle-type example inputs")
252
+ gr.Markdown(
253
+ "<-- Fewer solutions with low training error. LLM less sensitive to spurious(?) correlations."
254
+ )
255
 
256
  gr.Markdown("## Input fields")
257
  gr.Markdown(
 
347
  )
348
 
349
  with gr.Row():
350
+ truck_1_gen.click(
351
+ truck_1_fn,
352
+ inputs=[],
353
+ outputs=[
354
+ model_name,
355
+ own_model_name,
356
+ group_a_tokens,
357
+ group_b_tokens,
358
+ x_axis,
359
+ place_holder,
360
+ to_normalize,
361
+ n_fit,
362
+ input_text,
363
+ ],
364
+ )
365
 
366
+ truck_2_gen.click(
367
+ truck_2_fn,
368
+ inputs=[],
369
+ outputs=[
370
+ model_name,
371
+ own_model_name,
372
+ group_a_tokens,
373
+ group_b_tokens,
374
+ x_axis,
375
+ place_holder,
376
+ to_normalize,
377
+ n_fit,
378
+ input_text,
379
+ ],
380
+ )
381
 
382
  btn.click(
383
  predict_masked_tokens,
 
395
  outputs=[sample_text, female_fig, male_fig, df],
396
  )
397
 
398
+ demo.launch(debug=True)
399
 
400
  # %%