emiliol's picture
copy pasted from ChatGPT
c269068 verified
raw
history blame
877 Bytes
from transformers import pipeline
import gradio as gr
# Load the NER pipeline
ner_model = pipeline("ner", model="dslim/bert-base-NER", aggregation_strategy="simple")
def extract_named_entities(text):
# Use the NER model to extract named entities
entities = ner_model(text)
# Format the output for better readability
return [{"Entity": ent["entity_group"], "Text": ent["word"], "Score": round(ent["score"], 3)} for ent in entities]
# Define the Gradio interface
iface = gr.Interface(
fn=extract_named_entities,
inputs=gr.Textbox(lines=5, label="Input Text"),
outputs=gr.Dataframe(headers=["Entity", "Text", "Score"], label="Named Entities"),
title="Named Entity Recognition",
description="Input some text and get the named entities (like names, locations, organizations).",
)
# Launch the app
if __name__ == "__main__":
iface.launch()