Spaces:
Sleeping
Sleeping
from transformers import pipeline | |
import gradio as gr | |
# Load the NER pipeline | |
ner_model = pipeline("ner", model="dslim/bert-base-NER", aggregation_strategy="simple") | |
def extract_named_entities(text): | |
# Use the NER model to extract named entities | |
entities = ner_model(text) | |
# Format the output for better readability | |
return [{"Entity": ent["entity_group"], "Text": ent["word"], "Score": round(ent["score"], 3)} for ent in entities] | |
# Define the Gradio interface | |
iface = gr.Interface( | |
fn=extract_named_entities, | |
inputs=gr.Textbox(lines=5, label="Input Text"), | |
outputs=gr.Dataframe(headers=["Entity", "Text", "Score"], label="Named Entities"), | |
title="Named Entity Recognition", | |
description="Input some text and get the named entities (like names, locations, organizations).", | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
iface.launch() |