Spaces:
Running
Running
File size: 6,350 Bytes
e0ccd06 a1c24d9 30bad6e e0ccd06 8c568be e0ccd06 8c568be e0ccd06 30bad6e 4c36b18 30bad6e 4c36b18 30bad6e e0ccd06 2018dd8 e0ccd06 2018dd8 5ae724e e0ccd06 30bad6e e0ccd06 30bad6e e0ccd06 34e11d5 e0ccd06 e00ab88 8abfddb e00ab88 e0ccd06 68492c3 e0ccd06 b4b16a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
from openai import OpenAI
import gradio as gr
import os
import json
import functools
import random
import datetime
from transformers import AutoTokenizer
reflection_tokenizer = AutoTokenizer.from_pretrained("mattshumer/Reflection-Llama-3.1-70B")
api_key = os.environ.get('FEATHERLESS_API_KEY')
client = OpenAI(
base_url="https://api.featherless.ai/v1",
api_key=api_key
)
SYSTEM_PROMPT = """You are a helpful AI assistant. Your responses should be informative, polite, and tailored to the user's needs.
Please think carefully."""
def respond(message, history, model):
history_openai_format = [{"role": "system", "content": SYSTEM_PROMPT}]
for human, assistant in history:
history_openai_format.append({"role": "user", "content": human })
history_openai_format.append({"role": "assistant", "content":assistant})
history_openai_format.append({"role": "user", "content": message})
if model == "mattshumer/Reflection-Llama-3.1-70B":
# chat/completions not working for this model;
# apply chat template locally
response = client.completions.create(
model=model,
prompt=reflection_tokenizer.apply_chat_template(history_openai_format, tokenize=False),
temperature=1.0,
stream=True,
max_tokens=2000,
extra_headers={
'HTTP-Referer': 'https://huggingface.co/spaces/featherless-ai/try-this-model',
'X-Title': "HF's missing inference widget"
}
)
# debugger_ran = False
partial_message = ""
for chunk in response:
# if not debugger_ran:
# import code
# code.InteractiveConsole(locals=locals()).interact()
# debugger_ran = True
if chunk.choices[0].text is not None:
partial_message = partial_message + chunk.choices[0].text
prefix_to_strip = "<|start_header_id|>assistant<|end_header_id|>\n\n"
yield partial_message[len(prefix_to_strip):]
else:
response = client.chat.completions.create(
model=model,
messages= history_openai_format,
temperature=1.0,
stream=True,
max_tokens=2000,
extra_headers={
'HTTP-Referer': 'https://huggingface.co/spaces/featherless-ai/try-this-model',
'X-Title': "HF's missing inference widget"
}
)
partial_message = ""
for chunk in response:
if chunk.choices[0].delta.content is not None:
partial_message = partial_message + chunk.choices[0].delta.content
yield partial_message
logo = open('./logo.svg').read()
with open('./model-cache.json', 'r') as f_model_cache:
model_cache = json.load(f_model_cache)
model_class_filter = {
"mistral-v02-7b-std-lc": True,
"llama3-8b-8k": True,
"llama2-solar-10b7-4k": True,
"mistral-nemo-12b-lc": True,
"llama2-13b-4k": True,
"llama3-15b-8k": True,
"qwen2-32b-lc":False,
"llama3-70b-8k":False,
"qwen2-72b-lc":False,
"mixtral-8x22b-lc":False,
"llama3-405b-lc":False,
}
def build_model_choices():
all_choices = []
for model_class in model_cache:
if model_class not in model_class_filter:
print(f"Warning: new model class {model_class}. Treating as blacklisted")
continue
if not model_class_filter[model_class]:
continue
all_choices += [ (f"{model_id} ({model_class})", model_id) for model_id in model_cache[model_class] ]
# and add one more ...
model_class = "llama3-70b-8k"
model_id = "mattshumer/Reflection-Llama-3.1-70B"
all_choices += [(f"{model_id} ({model_class})", model_id)]
return all_choices
model_choices = build_model_choices()
def initial_model(referer=None):
return "mattshumer/Reflection-Llama-3.1-70B"
# if referer == 'http://127.0.0.1:7860/':
# return 'Sao10K/Venomia-1.1-m7'
# if referer and referer.startswith("https://huggingface.co/"):
# possible_model = referer[23:]
# full_model_list = functools.reduce(lambda x,y: x+y, model_cache.values(), [])
# model_is_supported = possible_model in full_model_list
# if model_is_supported:
# return possible_model
# # let's use a random but different model each day.
# key=os.environ.get('RANDOM_SEED', 'kcOtfNHA+e')
# o = random.Random(f"{key}-{datetime.date.today().strftime('%Y-%m-%d')}")
# return o.choice(model_choices)[1]
title_text="HuggingFace's missing inference widget"
css = """
.logo-mark { fill: #ffe184; }
/* from https://github.com/gradio-app/gradio/issues/4001
* necessary as putting ChatInterface in gr.Blocks changes behaviour
*/
.contain { display: flex; flex-direction: column; }
.gradio-container { height: 100vh !important; }
#component-0 { height: 100%; }
#chatbot { flex-grow: 1; overflow: auto;}
"""
with gr.Blocks(title_text, css=css) as demo:
gr.HTML("""
<h1 align="center">HuggingFace's missing inference widget</h1>
<h2 align="center">
Please select your model from the list 👇
</h2>
""")
# hidden_state = gr.State(value=initial_model)
with gr.Row():
model_selector = gr.Dropdown(
label="Select your Model",
choices=build_model_choices(),
value=initial_model,
# value=hidden_state,
scale=4
)
gr.Button(
value="Visit Model Card ↗️",
scale=1
).click(
inputs=[model_selector],
js="(model_selection) => { window.open(`https://huggingface.co/${model_selection}`, '_blank') }",
fn=None,
)
gr.ChatInterface(
respond,
additional_inputs=[model_selector],
head=""",
<script>console.log("Hello from gradio!")</script>
""",
)
gr.HTML(f"""
<p align="center">
Inference by <a href="https://featherless.ai">{logo}</a>
</p>
""")
def update_initial_model_choice(request: gr.Request):
return initial_model(request.headers.get('referer'))
demo.load(update_initial_model_choice, outputs=model_selector)
demo.launch(concurrency_count=6)
|