File size: 7,196 Bytes
474793e
b9708f0
 
 
c1a2f8d
 
 
 
474793e
b9708f0
 
 
6d84fa3
c1a2f8d
6d84fa3
55ebd34
6d84fa3
 
 
 
c1a2f8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
474793e
c1a2f8d
 
474793e
c1a2f8d
 
 
 
 
 
 
 
 
474793e
c1a2f8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
474793e
c1a2f8d
 
 
 
 
 
 
 
 
 
 
 
 
 
474793e
c1a2f8d
6d84fa3
c1a2f8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
474793e
c1a2f8d
6d84fa3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import gradio as gr
from transformers import AutoProcessor, AutoTokenizer
from peft import AutoPeftModelForCausalLM
import torch
import os

if os.environ.get('HF_TOKEN') is None:
    raise ValueError("You must set the HF_TOKEN environment variable to use this script, you also need to have access to the Llama 3.2 model family")

hugging_face_model_id = "eltorio/Llama-3.2-3B-appreciation"
base_model_path = "meta-llama/Llama-3.2-3B-Instruct"
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')

device_desc = f"Cette I.A. fonctionne sur {device} 🚀." if device == torch.device('cuda') else f"🐢 Cette I.A. ne peut pas fonctionner sur {device} 🐢."
# Define the title, description, and device description for the Gradio interface
title = f"Une intelligence artificielle pour écrire des appréciations qui tourne sur {device}"
desc = "Ce modèle vous propose une évaluation automatique."

# Define the long description for the Gradio interface
long_desc = f"Cette démonstration est basée sur le modèle <a href='https://huggingface.co/eltorio/Llama-3.2-3B-appreciation'>Llama-3.2-3B-appreciation</a>, c'est un LLM basé sur Llama 3.2 3B-instruct!<br><b>{device_desc}</b><br> 2024 - Ronan Le Meillat"

if torch.cuda.is_available():
    # Determine the device (GPU or CPU) to run the model on
    device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
    print(f"Using device: {device}")  # Log the device being used
    # Initialize the processor from the base model path
    processor = AutoProcessor.from_pretrained(base_model_path, trust_remote_code=True)
    # Initialize the model from the base model path and set the torch dtype to bfloat16
    peft_model = AutoPeftModelForCausalLM.from_pretrained(hugging_face_model_id)
    merged_model = peft_model.merge_and_unload()
    tokenizer = AutoTokenizer.from_pretrained(hugging_face_model_id)


    #tokenizer = get_chat_template(
    #    tokenizer,
    #    chat_template = "llama-3.1",
    #)

    # Define a function to infer a evaluation from the incoming parameters
    def infere(trimestre: str, moyenne_1: float,moyenne_2: float,moyenne_3: float, comportement: float, participation: float, travail: float) -> str:

        if trimestre == "1":
            trimestre_full = "premier trimestre"
            user_question = f"Veuillez rédiger une appréciation en moins de 40 mots pour le {trimestre_full} pour cet élève qui a eu {moyenne_1} de moyenne, j'ai évalué son comportement à {comportement}/10, sa participation à {participation}/10 et son travail à {travail}/10. Les notes ne doivent pas apparaître dans l'appréciation."
        elif trimestre == "2":
            trimestre_full = "deuxième trimestre"
            user_question = f"Veuillez rédiger une appréciation en moins de 40 mots pour le {trimestre_full} pour cet élève qui a eu {moyenne_2} de moyenne ce trimestre et {moyenne_1} au premier trimestre, j'ai évalué son comportement à {comportement}/10, sa participation à {participation}/10 et son travail à {travail}/10. Les notes ne doivent pas apparaître dans l'appréciation."
        elif trimestre == "3":
            trimestre_full = "troisième trimestre"
            user_question= f"Veuillez rédiger une appréciation en moins de 40 mots pour le {trimestre_full} pour cet élève qui a eu {moyenne_3} de moyenne ce trimestre, {moyenne_2} au deuxième trimestre et {moyenne_1} au premier trimestre, j'ai évalué son comportement à {comportement}/10, sa participation à {participation}/10 et son travail à {travail}/10. Les notes ne doivent pas apparaître dans l'appréciation."

        # Define a chat template for the model to respond to
        messages = [
            {
                "role": "system",
                "content": "Vous êtes une IA assistant les enseignants d'histoire-géographie en rédigeant à leur place une appréciation personnalisée pour leur élève en fonction de ses performances. Votre appreciation doit être en français, bienveillante, constructive, et aider l'élève à comprendre ses points forts et les axes d'amélioration. Votre appréciation doit comporter de 1 à 40 mots. Votre appréciation ne doit jamais comporter la valeur de la note. Votre appréciation doit utiliser le style impersonnel."},
            {
                "role": "user",
                "content": user_question},
        ]
        inputs = tokenizer.apply_chat_template(
        messages,
        tokenize = True,
        add_generation_prompt = True, # Must add for generation
        return_tensors = "pt",).to(device)
        outputs = merged_model.generate(input_ids = inputs, max_new_tokens = 90, use_cache = True,
                            temperature = 1.5, min_p = 0.1)
        decoded_sequences = tokenizer.batch_decode(outputs[:, inputs.shape[1]:],skip_special_tokens=True)[0]
        return decoded_sequences

    # Create a Gradio interface with the infere function and specified title and descriptions
    autoeval = gr.Interface(fn=infere, inputs=[
            gr.Radio(
                ["1", "2", "3"], value="1", label="trimestre", info="Trimestre"
            ),
            gr.Slider(0, 20,label="moyenne_1", value=10, info="Moyenne trimestre 1"),
            gr.Slider(0, 20,label="moyenne_2", value=10, info="Moyenne trimestre 2"),
            gr.Slider(0, 20,label="moyenne_3", value=10, info="Moyenne trimestre 3"),
            gr.Slider(0, 10, value=5, label="comportement", info="Comportement (1 à 10)"),
            gr.Slider(0, 10, value=5, label="participation", info="Participation (1 à 10)"),
            gr.Slider(0, 10, value=5, label="travail", info="Travail (1 à 10)"),
            
        ], outputs="text", title=title, 
                    description=desc, article=long_desc)

    # Launch the Gradio interface and share it
    autoeval.launch(server_name="0.0.0.0",share=True)
else:
    print("No GPU available")
    device = torch.device('cpu')
    def infere(trimestre: str, moyenne_1: float,moyenne_2: float,moyenne_3: float, comportement: float, participation: float, travail: float) -> str:
        return "No GPU available, please contact me"
    
    # Create a Gradio interface with the infere function and specified title and descriptions
    autoeval = gr.Interface(fn=infere, inputs=[
            gr.Radio(
                ["1", "2", "3"], value="1", label="trimestre", info="Trimestre"
            ),
            gr.Slider(0, 20,label="moyenne_1", value=10, info="Moyenne trimestre 1"),
            gr.Slider(0, 20,label="moyenne_2", value=10, info="Moyenne trimestre 2"),
            gr.Slider(0, 20,label="moyenne_3", value=10, info="Moyenne trimestre 3"),
            gr.Slider(0, 10, value=5, label="comportement", info="Comportement (1 à 10)"),
            gr.Slider(0, 10, value=5, label="participation", info="Participation (1 à 10)"),
            gr.Slider(0, 10, value=5, label="travail", info="Travail (1 à 10)"),
            
        ], outputs="text", title=title, 
                    description=desc, article=long_desc)

    # Launch the Gradio interface and share it
    autoeval.launch(server_name="0.0.0.0",share=True)