Spaces:
Sleeping
Sleeping
File size: 1,210 Bytes
6fc805b 5c2f8ce 80b26db 5c2f8ce 80b26db 6fc805b 5c2f8ce 98e1cb0 d133fb5 4dec23b d133fb5 5c2f8ce 6fc805b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
from transformers import AutoModelForQuestionAnswering, AutoModelForSeq2SeqLM, AutoTokenizer, pipeline
import gradio as grad
import ast
mdl_name = "deepset/roberta-base-squad2"
my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name)
model_translate_name = 'danhsf/m2m100_418M-finetuned-kde4-en-to-pt_BR'
model_translate = AutoModelForSeq2SeqLM.from_pretrained(model_translate_name)
model_translate_token = AutoTokenizer.from_pretrained(model_translate_name)
translate_pipeline = ('translation', model=model_translate_name)
def answer_question(question,context):
text= "{"+"'question': '"+question+"','context': '"+context+"'}"
di=ast.literal_eval(text)
response = my_pipeline(di)
print('response', response)
return response
def translate(text):
inputs = model_translate_token(text, return_tensor='pt')
translate_output = model_translate.generate(**inputs)
response = model_translate_token(translate_output[0], skip_special_tokens=True)
#response = translate_pipeline(text)
return response
#grad.Interface(answer_question, inputs=["text","text"], outputs="text").launch()
grad.Interface(translate, inputs=['text',], outputs='text').launch() |