File size: 7,984 Bytes
ef32dc8 8be74ba 93010f6 8be74ba 0f588e7 8be74ba bba4630 0f588e7 8be74ba 0f588e7 8be74ba 5769259 8be74ba 0f588e7 8be74ba 303a66e 8be74ba 303a66e 5769259 8be74ba 5769259 8be74ba a4430c5 8be74ba a4430c5 8be74ba ef32dc8 8be74ba ef32dc8 8be74ba ef32dc8 8be74ba ef32dc8 8be74ba ef32dc8 8be74ba ef32dc8 ec69747 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import gradio as gr
import pandas as pd
banner_url = "https://huggingface.co/spaces/elmresearchcenter/open_universal_arabic_asr_leaderboard/resolve/main/banner.png"
BANNER = f'<div style="display: flex; justify-content: space-around;"><img src="{banner_url}" alt="Banner" style="width: 20vw; min-width: 300px; max-width: 600px;"> </div>'
INTRODUCTION_TEXT = """
π**Open Universal Arabic ASR Leaderboard**π benchmarks multi-dialect Arabic ASR models on various multi-dialect datasets.
\nApart from the WER%/CER% for each test set, we also report the Average WER%/CER% and rank the models based on the Average WER, from lowest to highest.
\nTo reproduce the benchmark numbers and request a model that is not listed, you can launch an issue/PR in our [GitHub repo](https://github.com/Natural-Language-Processing-Elm/open_universal_arabic_asr_leaderboard)π.
\nFor more detailed analysis such as models' robustness, speaker adaption, model efficiency and memory usage, please check our [paper](https://arxiv.org/pdf/2412.13788).
"""
CITATION_BUTTON_TEXT = """
@article{wang2024open,
title={Open Universal Arabic ASR Leaderboard},
author={Wang, Yingzhi and Alhmoud, Anas and Alqurishi, Muhammad},
journal={arXiv preprint arXiv:2412.13788},
year={2024}
}
"""
METRICS_TAB_TEXT = METRICS_TAB_TEXT = """
## Metrics
We report both the Word Error Rate (WER) and Character Error Rate (CER) metrics.
## Reproduction
The Open Universal Arabic ASR Leaderboard will be a continuous benchmark project.
\nWe open-source the evaluation scripts at our [GitHub repo](https://github.com/Natural-Language-Processing-Elm/open_universal_arabic_asr_leaderboard).
\nPlease launch a discussion in our GitHub repo to let us know if you want to learn about the performance of a new model.
## Benchmark datasets
| Test Set | Num Dialects | Test (h) |
|-------------------------------------------------------------------------------------------------|----------------|-------------|
| [SADA](https://www.kaggle.com/datasets/sdaiancai/sada2022) | 10 | 10.7 |
| [Common Voice 18.0](https://commonvoice.mozilla.org/en/datasets) | 25 | 12.6 |
| [MASC (Clean-Test)](https://ieee-dataport.org/open-access/masc-massive-arabic-speech-corpus) | 7 | 10.5 |
| [MASC (Noisy-Test)](https://ieee-dataport.org/open-access/masc-massive-arabic-speech-corpus) | 8 | 14.9 |
| [MGB-2](http://www.mgb-challenge.org/MGB-2.html) | Unspecified | 9.6 |
| [Casablanca](https://huggingface.co/datasets/UBC-NLP/Casablanca) | 8 | 7.7 |
## In-depth Analysis
We also provide a comprehensive analysis of the models' robustness, speaker adaptation, inference efficiency and memory consumption.
\nPlease check our [paper](https://arxiv.org/pdf/2412.13788) to learn more.
"""
def styled_message(message):
return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
LAST_UPDATED = "Jan 12th 2025:[New models included: nvidia-Parakeet-ctc-1.1b-concat and nvidia-Parakeet-ctc-1.1b-universal]+[New dataset included: Casablanca]"
results = {
"Model": ["nvidia-conformer-large-arabic (lm)", "nvidia-conformer-large-arabic (greedy)", "openai/whisper-large-v3", "facebook/seamless-m4t-v2-large", "openai/whisper-large-v3-turbo", "openai/whisper-large-v2", "openai/whisper-large", "asafaya/hubert-large-arabic-transcribe/", "openai/whisper-medium", "nvidia-Parakeet-ctc-1.1b-concat", "nvidia-Parakeet-ctc-1.1b-universal", "facebook/mms-1b-all", "openai/whisper-small", "whitefox123/w2v-bert-2.0-arabic-4", "jonatasgrosman/wav2vec2-large-xlsr-53-arabic", "speechbrain/asr-wav2vec2-commonvoice-14-ar"],
"Average WERβ¬οΈ": [32.91, 34.74, 36.86, 38.16, 40.05, 40.20, 42.57, 45.50, 45.57, 46.54, 51.96, 54.54, 55.13, 58.13, 60.98, 65.74],
"Average CER": [13.84, 13.37, 17.21, 17.03, 18.87, 19.55, 20.49, 17.35, 22.27, 23.88, 25.19, 21.45, 21.68, 27.62, 25.61, 30.93],
"SADA WER": [44.52, 47.26, 55.96, 62.52, 60.36, 57.46, 63.24, 67.82, 67.71, 70.70, 73.58, 77.48, 78.02, 87.34, 86.82, 88.54],
"SADA CER": [23.76, 22.54, 34.62, 37.61, 37.67, 36.59, 40.16, 31.83, 43.83, 46.70, 49.48, 37.50, 33.17, 56.75, 44.20, 50.28],
"Common Voice WER": [8.80, 10.60, 17.83, 21.70, 25.73, 21.77, 26.04, 8.01, 28.07, 26.34, 40.01, 26.52, 24.18, 41.79, 23.00, 29.17],
"Common Voice CER": [2.77, 3.05, 5.74, 6.24, 10.89, 7.44, 9.61, 2.37, 10.38, 9.82, 14.64, 7.21, 6.79, 15.75, 6.64, 9.85],
"MASC(clean-test) WER": [23.74, 24.12, 24.66, 25.04, 25.51, 27.25, 28.89, 32.94, 29.99, 30.49, 36.16, 38.82, 35.93, 37.82, 42.75, 49.10],
"MASC(clean-test) CER": [5.63, 5.63, 7.24, 7.19, 7.55, 8.28, 9.05, 7.15, 8.98, 8.41, 10.29, 10.36, 9.01, 11.92, 11.87, 16.37],
"MASC(noisy-test) WER": [34.29, 35.64, 34.63, 33.24, 37.16, 38.55, 40.79, 50.16, 42.91, 45.95, 50.03, 57.33, 56.36, 53.28, 64.27, 69.57],
"MASC(noisy-test) CER": [11.07, 11.02, 12.89, 11.92, 13.93, 15.49, 16.31, 15.62, 17.49, 18.72, 20.09, 19.76, 19.43, 21.93, 24.17, 30.17],
"MGB-2 WER": [17.20, 19.69, 16.26, 20.23, 17.75, 25.17, 24.28, 37.51, 29.32, 24.94, 30.68, 39.16, 48.64, 40.66, 56.29, 64.37],
"MGB-2 CER": [6.87, 7.46, 7.74, 9.37, 8.34, 13.48, 12.10, 11.07, 14.82, 9.87, 11.36, 13.48, 15.56, 19.39, 20.44, 26.56],
"Casablanca WER": [68.90, 71.13, 71.81, 66.25, 73.79, 71.01, 72.18, 76.53, 75.44, 80.80, 81.30, 87.95, 87.64, 87.88, 92.72, 93.68],
"Casablanca CER": [32.97, 30.50, 35.04, 29.85, 34.83, 36.00, 35.71, 36.03, 38.12, 49.77, 45.31, 40.41, 46.12, 39.99, 46.33, 52.36],
}
original_df = pd.DataFrame(results)
original_df.sort_values(by="Average WERβ¬οΈ", inplace=True)
TYPES = ['str', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number']
LEADERBOARD_CSS = """
#leaderboard-table th .header-content {
white-space: nowrap;
}
"""
def request_model(model_text):
return styled_message("π€ Please launch a discussion in our GitHub repo, thank you. π€")
with gr.Blocks(css=LEADERBOARD_CSS) as demo:
gr.HTML(BANNER, elem_id="banner")
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
Leaderboard", elem_id="od-benchmark-tab-table", id=0):
leaderboard_table = gr.Dataframe(
value=original_df,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
with gr.TabItem("π Metrics", elem_id="od-benchmark-tab-table", id=1):
gr.Markdown(METRICS_TAB_TEXT, elem_classes="markdown-text")
with gr.TabItem("βοΈβ¨ Request a model here!", elem_id="od-benchmark-tab-table", id=2):
with gr.Column():
gr.Markdown("# βοΈβ¨ Request results for a new model here!", elem_classes="markdown-text")
model_name_textbox = gr.Textbox(label="Model name (user_name/model_name)")
mdw_submission_result = gr.Markdown()
btn_submit = gr.Button(value="π Request")
btn_submit.click(request_model, [model_name_textbox], mdw_submission_result)
gr.Markdown(f"Last updated on **{LAST_UPDATED}**", elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("π Citation", open=False):
gr.Textbox(
value=CITATION_BUTTON_TEXT, lines=7,
label="Copy the BibTeX snippet to cite this source",
elem_id="citation-button",
show_copy_button=True,
)
demo.launch(allowed_paths=["banner.png"], ssr_mode=False) |