File size: 12,032 Bytes
07423df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
---
description: All the settings needed for creating an experiment are explored in this page.
---
import GeneralSettingsDataset from '../../tooltips/experiments/_dataset.mdx';
import GeneralSettingsProblemType from '../../tooltips/experiments/_problem-type.mdx';
import GSImportConfigFromYaml from '../../tooltips/experiments/_import-config-from-yaml.mdx';
import GSExperimentName from '../../tooltips/experiments/_experiment-name.mdx';
import GSLLMBackbone from '../../tooltips/experiments/_llm-backbone.mdx';
import DSTrainDataframe from '../../tooltips/experiments/_train-dataframe.mdx';
import DSvalidationStrategy from '../../tooltips/experiments/_validation-strategy.mdx';
import DSvalidationSize from '../../tooltips/experiments/_validation-size.mdx';
import DSdataSample from '../../tooltips/experiments/_data-sample.mdx';
import DSpromptColumn from '../../tooltips/experiments/_prompt-column.mdx';
import DSsystemColumn from '../../tooltips/experiments/_system-column.mdx';
import DSanswerColumn from '../../tooltips/experiments/_answer-column.mdx';
import DSparentIdColumn from '../../tooltips/experiments/_parent-id-column.mdx';
import DStextPromptStart from '../../tooltips/experiments/_text-prompt-start.mdx';
import DStextAnswerSeparator from '../../tooltips/experiments/_text-answer-separator.mdx';
import DSadaptiveKlControl from '../../tooltips/experiments/_adaptive-kl-control.mdx';
import DSaddEosTokentoprompt from '../../tooltips/experiments/_add-eos-token-to-prompt.mdx';
import DSaddEosTokentoanswer from '../../tooltips/experiments/_add-eos-token-to-answer.mdx';
import DSmaskPromptlabels from '../../tooltips/experiments/_mask-prompt-labels.mdx';
import TSmaxLengthPrompt from '../../tooltips/experiments/_max-length-prompt.mdx';
import TSmaxLengthAnswer from '../../tooltips/experiments/_max-length-answer.mdx';
import TSmaxLength from '../../tooltips/experiments/_max-length.mdx';
import TSaddpromptanswertokens from '../../tooltips/experiments/_add-prompt-answer-tokens.mdx';
import TSpaddingQuantile from '../../tooltips/experiments/_padding-quantile.mdx';
import TSuseFast from '../../tooltips/experiments/_use-fast.mdx';
import ASBackboneDtype from '../../tooltips/experiments/_backbone-dtype.mdx';
import ASGradientcheckpointing from '../../tooltips/experiments/_gradient-checkpointing.mdx';
import ASforceEmbeddingGradients from '../../tooltips/experiments/_force-embedding-gradients.mdx';
import ASintermediateDropout from '../../tooltips/experiments/_intermediate-dropout.mdx';
import ASpretrainedWeights from '../../tooltips/experiments/_pretrained-weights.mdx';
import TSoptimizer from '../../tooltips/experiments/_optimizer.mdx';
import TSlossfunction from '../../tooltips/experiments/_loss-function.mdx';
import TSlearningRate from '../../tooltips/experiments/_learning-rate.mdx';
import TSuseflashattention2 from '../../tooltips/experiments/_use-flash-attention-2.mdx';
import TSbatchSize from '../../tooltips/experiments/_batch-size.mdx';
import TSepochs from '../../tooltips/experiments/_epochs.mdx';
import TSschedule from '../../tooltips/experiments/_schedule.mdx';
import TSwarmupEpochs from '../../tooltips/experiments/_warmup-epochs.mdx';
import TSweightDecay from '../../tooltips/experiments/_weight-decay.mdx';
import TSGradientclip from '../../tooltips/experiments/_gradient-clip.mdx';
import TSgradAccumulation from '../../tooltips/experiments/_grad-accumulation.mdx';
import TSlora from '../../tooltips/experiments/_lora.mdx';
import TSloraR from '../../tooltips/experiments/_lora-r.mdx';
import TSloraAlpha from '../../tooltips/experiments/_lora-alpha.mdx';
import TSloraDropout from '../../tooltips/experiments/_lora-dropout.mdx';
import TSloraTargetModules from '../../tooltips/experiments/_lora-target-modules.mdx';
import TSsavebestcheckpoint from '../../tooltips/experiments/_save-best-checkpoint.mdx';
import TSevaluationepochs from '../../tooltips/experiments/_evaluation-epochs.mdx';
import TSevaluationbeforetraining from '../../tooltips/experiments/_evaluate-before-training.mdx';
import TStrainvalidationdata from '../../tooltips/experiments/_train-validation-data.mdx';
import TSuseRHLF from '../../tooltips/experiments/_use-rlhf.mdx';
import TSrewardModel from '../../tooltips/experiments/_reward-model.mdx';
import TSinitialKlCoefficient from '../../tooltips/experiments/_initial-kl-coefficient.mdx';
import TSklTarget from '../../tooltips/experiments/_kl-target.mdx';
import TSklHorizon from '../../tooltips/experiments/_kl-horizon.mdx';
import TSadvantagesGamma from '../../tooltips/experiments/_advantages-gamma.mdx';
import TSadvantagesLambda from '../../tooltips/experiments/_advantages-lambda.mdx';
import TSppoClipPolicy from '../../tooltips/experiments/_ppo-clip-policy.mdx';
import TSppoClipValue from '../../tooltips/experiments/_ppo-clip-value.mdx';
import TSscalingFactorValueLoss from '../../tooltips/experiments/_scaling-factor-value-loss.mdx';
import TSppoEpochs from '../../tooltips/experiments/_ppo-epochs.mdx';
import TSppoBatchSize from '../../tooltips/experiments/_ppo-batch-size.mdx';
import TSppoGenerateTemp from '../../tooltips/experiments/_ppo-generate-temperature.mdx';
import TSoffloadRewardModel from '../../tooltips/experiments/_offload-reward-model.mdx';
import AStokenmaskprobability from '../../tooltips/experiments/_token-mask-probability.mdx';
import ASskipParentprobability from '../../tooltips/experiments/_skip-parent-probability.mdx';
import ASrandomparentprobability from '../../tooltips/experiments/_random-parent-probability.mdx';
import ASneftunenoisealpha from '../../tooltips/experiments/_neftune_noise_alpha.mdx';
import PSmetric from '../../tooltips/experiments/_metric.mdx';
import PSmetricgptmodel from '../../tooltips/experiments/_metric-gpt-model.mdx';
import PSmetricgpttemplate from '../../tooltips/experiments/_metric-gpt-template.mdx';
import PSminlengthinference from '../../tooltips/experiments/_min-length-inference.mdx';
import PSmaxlengthinference from '../../tooltips/experiments/_max-length-inference.mdx';
import PSbatchsizeinference from '../../tooltips/experiments/_batch-size-inference.mdx';
import PSdosample from '../../tooltips/experiments/_do-sample.mdx';
import PSnumbeams from '../../tooltips/experiments/_num-beams.mdx';
import PStemperature from '../../tooltips/experiments/_temperature.mdx';
import PSrepetitionpenalty from '../../tooltips/experiments/_repetition-penalty.mdx';
import PSstoptokens from '../../tooltips/experiments/_stop-tokens.mdx';
import PStopk from '../../tooltips/experiments/_top-k.mdx';
import PStopp from '../../tooltips/experiments/_top-p.mdx';
import ESgpus from '../../tooltips/experiments/_gpus.mdx';
import ESmixedprecision from '../../tooltips/experiments/_mixed-precision.mdx';
import EScompilemodel from '../../tooltips/experiments/_compile-model.mdx';
import ESfindunusedparameters from '../../tooltips/experiments/_find-unused-parameters.mdx';
import EStrustremotecode from '../../tooltips/experiments/_trust-remote-code.mdx';
import EShuggingfacebranch from '../../tooltips/experiments/_huggingface-branch.mdx';
import ESnumofworkers from '../../tooltips/experiments/_number-of-workers.mdx';
import ESseed from '../../tooltips/experiments/_seed.mdx';
import LSlogger from '../../tooltips/experiments/_logger.mdx';
import LSneptuneproject from '../../tooltips/experiments/_neptune-project.mdx';
# Experiment settings
The settings for creating an experiment are grouped into the following sections:
- [General settings](#general-settings)
- [Dataset settings](#dataset-settings)
- [Tokenizer settings](#tokenizer-settings)
- [Architecture settings](#architecture-settings)
- [Training settings](#training-settings)
- [Augmentation settings](#augmentation-settings)
- [Prediction settings](#prediction-settings)
- [Environment settings](#environment-settings)
- [Logging settings](#logging-settings)
The settings under each category are listed and described below.
## General settings
### Dataset
<GeneralSettingsDataset/>
### Problem type
<GeneralSettingsProblemType/>
### Import config from YAML
<GSImportConfigFromYaml/>
### Experiment name
<GSExperimentName/>
### LLM backbone
<GSLLMBackbone/>
## Dataset settings
### Train dataframe
<DSTrainDataframe/>
### Validation strategy
<DSvalidationStrategy/>
### Validation size
<DSvalidationSize/>
### Data sample
<DSdataSample/>
### System column
<DSsystemColumn/>
### Prompt column
<DSpromptColumn/>
### Answer column
<DSanswerColumn/>
### Parent ID column
<DSparentIdColumn/>
### Text prompt start
<DStextPromptStart/>
### Text answer separator
<DStextAnswerSeparator/>
## Adaptive Kl control
<DSadaptiveKlControl/>
### Add EOS token to prompt
<DSaddEosTokentoprompt/>
### Add EOS token to answer
<DSaddEosTokentoanswer/>
### Mask prompt labels
<DSmaskPromptlabels/>
## Tokenizer settings
### Max length prompt
<TSmaxLengthPrompt/>
### Max length answer
<TSmaxLengthAnswer/>
### Max length
<TSmaxLength/>
### Add prompt answer tokens
<TSaddpromptanswertokens/>
### Padding quantile
<TSpaddingQuantile/>
### Use fast
<TSuseFast />
## Architecture settings
### Backbone Dtype
<ASBackboneDtype/>
### Gradient Checkpointing
<ASGradientcheckpointing/>
### Force Embedding Gradients
<ASforceEmbeddingGradients/>
### Intermediate dropout
<ASintermediateDropout/>
### Pretrained weights
<ASpretrainedWeights/>
## Training settings
### Loss function
<TSlossfunction/>
### Optimizer
<TSoptimizer />
### Learning rate
<TSlearningRate/>
### Use Flash Attention 2
<TSuseflashattention2/>
### Batch size
<TSbatchSize/>
### Epochs
<TSepochs/>
### Schedule
<TSschedule/>
### Warmup epochs
<TSwarmupEpochs/>
### Weight decay
<TSweightDecay/>
### Gradient clip
<TSGradientclip/>
### Grad accumulation
<TSgradAccumulation/>
### Lora
<TSlora/>
### Lora R
<TSloraR/>
### Lora Alpha
<TSloraAlpha/>
### Lora dropout
<TSloraDropout/>
### Lora target modules
<TSloraTargetModules/>
### Save best checkpoint
<TSsavebestcheckpoint/>
### Evaluation epochs
<TSevaluationepochs/>
### Evaluate before training
<TSevaluationbeforetraining/>
### Train validation data
<TStrainvalidationdata/>
### Use RLHF
<TSuseRHLF/>
### Reward model
<TSrewardModel/>
### Adaptive KL control
<DSadaptiveKlControl/>
### Initial KL coefficient
<TSinitialKlCoefficient/>
### KL target
<TSklTarget/>
### KL Horizon
<TSklHorizon/>
### Advantages gamma
<TSadvantagesGamma/>
### Advantages Lambda
<TSadvantagesLambda/>
### PPO clip policy
<TSppoClipPolicy/>
### PPO clip value
<TSppoClipValue/>
### Scaling factor value loss
<TSscalingFactorValueLoss/>
### PPO epochs
<TSppoEpochs/>
### PPO Batch Size
<TSppoBatchSize/>
### PPO generate temperature
<TSppoGenerateTemp/>
### Offload reward model
<TSoffloadRewardModel/>
## Augmentation settings
### Token mask probability
<AStokenmaskprobability/>
### Skip parent probability
<ASskipParentprobability/>
### Random parent probability
<ASrandomparentprobability/>
### Neftune noise alpha
<ASneftunenoisealpha/>
## Prediction settings
### Metric
<PSmetric/>
### Metric GPT model
<PSmetricgptmodel/>
### Metric GPT template
<PSmetricgpttemplate/>
### Min length inference
<PSminlengthinference/>
### Max length inference
<PSmaxlengthinference/>
### Batch size inference
<PSbatchsizeinference/>
### Do sample
<PSdosample/>
### Num beams
<PSnumbeams/>
### Temperature
<PStemperature/>
### Repetition penalty
<PSrepetitionpenalty/>
### Stop tokens
<PSstoptokens/>
### Top K
<PStopk />
### Top P
<PStopp />
## Environment settings
### GPUs
<ESgpus/>
### Mixed precision
<ESmixedprecision/>
### Compile model
<EScompilemodel/>
### Find unused parameters
<ESfindunusedparameters/>
### Trust remote code
<EStrustremotecode/>
### Huggingface branch
<EShuggingfacebranch/>
### Number of workers
<ESnumofworkers/>
### Seed
<ESseed/>
## Logging settings
### Logger
<LSlogger/>
### Neptune project
<LSneptuneproject/>
|