File size: 6,159 Bytes
062809f
ab0ca15
 
062809f
 
ab0ca15
062809f
 
ab0ca15
 
1009376
 
 
 
 
 
 
 
 
 
 
 
ab0ca15
062809f
 
 
ab0ca15
062809f
 
 
 
 
 
 
 
 
 
20bee95
062809f
 
 
 
 
ab0ca15
 
062809f
 
 
 
1009376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
062809f
1009376
ab0ca15
 
 
 
 
062809f
ab0ca15
 
 
 
 
 
062809f
ab0ca15
 
062809f
ab0ca15
 
 
 
 
062809f
ab0ca15
 
 
 
 
062809f
 
 
 
 
 
 
ab0ca15
 
 
 
 
 
 
 
 
062809f
ab0ca15
 
062809f
ab0ca15
062809f
ab0ca15
 
 
 
062809f
ab0ca15
 
 
 
 
 
 
 
 
 
1009376
 
 
 
 
 
ab0ca15
 
 
 
 
 
 
 
062809f
ab0ca15
 
 
 
 
 
 
062809f
ab0ca15
 
 
 
 
 
062809f
ab0ca15
062809f
ab0ca15
 
 
 
 
062809f
ab0ca15
062809f
ab0ca15
 
1009376
 
062809f
ab0ca15
1009376
062809f
ab0ca15
 
062809f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import spaces
import gradio as gr
import numpy as np
import PIL.Image
from PIL import Image
import random
from diffusers import ControlNetModel, StableDiffusionXLPipeline, AutoencoderKL
import cv2
import torch

from diffusers import (
    DDIMScheduler,
    DPMSolverMultistepScheduler,
    EulerDiscreteScheduler,
    EulerAncestralDiscreteScheduler,
    HeunDiscreteScheduler,
    KDPM2DiscreteScheduler,
    KDPM2AncestralDiscreteScheduler,
    LMSDiscreteScheduler,
    UniPCMultistepScheduler,
)


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)

#pipe = StableDiffusionXLPipeline.from_pretrained(
#    #"yodayo-ai/clandestine-xl-1.0", 
#    torch_dtype=torch.float16, 
#    use_safetensors=True,
#    custom_pipeline="lpw_stable_diffusion_xl",
#    add_watermarker=False #,
#    #variant="fp16"
#)
pipe = StableDiffusionXLPipeline.from_single_file(
    #"https://huggingface.co/Laxhar/noob_sdxl_beta/noob_hercules4/fp16/checkpoint-e0_s10000.safetensors/checkpoint-e0_s10000.safetensors",
    "https://huggingface.co/bluepen5805/illustrious_pencil-XL/illustrious_pencil-XL-v1.2.1.safetensors",
    use_safetensors=True,
    torch_dtype=torch.float16,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216

    
@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, sampler_name):

    # サンプラーの設定
    if sampler_name == "DDIM":
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
    elif sampler_name == "DPMSolverMultistep":
        pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
    elif sampler_name == "Euler":
        pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
    elif sampler_name == "EulerAncestral":
        pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
    elif sampler_name == "Heun":
        pipe.scheduler = HeunDiscreteScheduler.from_config(pipe.scheduler.config)
    elif sampler_name == "KDPM2":
        pipe.scheduler = KDPM2DiscreteScheduler.from_config(pipe.scheduler.config)
    elif sampler_name == "KDPM2Ancestral":
        pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config)
    elif sampler_name == "LMS":
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
    elif sampler_name == "UniPC":
        pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
    else:
        pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)

    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    output_image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator
    ).images[0]

    return output_image


css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:

    with gr.Column(elem_id="col-container"):
        gr.Markdown("""
         Text-to-Image Demo
        using [illustrious_pencil-XL](https://huggingface.co/bluepen5805/illustrious_pencil-XL)
        """)
        #yodayo-ai/clandestine-xl-1.0 
        #yodayo-ai/holodayo-xl-2.1
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0)

        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):

            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            sampler_name = gr.Dropdown(
                label="Sampler",
                choices=["DDIM", "DPMSolverMultistep", "Euler", "EulerAncestral", "Heun", "KDPM2", "KDPM2Ancestral", "LMS", "UniPC"],
                value="EulerAncestral",
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,#832,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,#1216,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=20.0,
                    step=0.1,
                    value=4,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=28,
                    step=1,
                    value=28,
                )

                

    run_button.click(#lambda x: None, inputs=None, outputs=result).then(
        fn=infer,
        inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, sampler_name],
        outputs=[result]
    )

demo.queue().launch()