Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,33 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
|
5 |
import torch
|
|
|
6 |
|
|
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
|
9 |
-
|
10 |
-
torch.cuda.max_memory_allocated(device=device)
|
11 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
12 |
-
pipe.enable_xformers_memory_efficient_attention()
|
13 |
-
pipe = pipe.to(device)
|
14 |
-
else:
|
15 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
16 |
-
pipe = pipe.to(device)
|
17 |
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
-
MAX_IMAGE_SIZE =
|
20 |
-
|
21 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
22 |
|
|
|
|
|
23 |
if randomize_seed:
|
24 |
seed = random.randint(0, MAX_SEED)
|
25 |
-
|
26 |
generator = torch.Generator().manual_seed(seed)
|
27 |
-
|
28 |
image = pipe(
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
generator = generator
|
36 |
).images[0]
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
examples = [
|
41 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
42 |
-
"An astronaut riding a green horse",
|
43 |
-
"A delicious ceviche cheesecake slice",
|
44 |
-
]
|
45 |
|
46 |
css="""
|
47 |
#col-container {
|
@@ -50,17 +36,11 @@ css="""
|
|
50 |
}
|
51 |
"""
|
52 |
|
53 |
-
if torch.cuda.is_available():
|
54 |
-
power_device = "GPU"
|
55 |
-
else:
|
56 |
-
power_device = "CPU"
|
57 |
-
|
58 |
with gr.Blocks(css=css) as demo:
|
59 |
|
60 |
with gr.Column(elem_id="col-container"):
|
61 |
-
gr.Markdown(f"""
|
62 |
-
|
63 |
-
Currently running on {power_device}.
|
64 |
""")
|
65 |
|
66 |
with gr.Row():
|
@@ -76,16 +56,9 @@ with gr.Blocks(css=css) as demo:
|
|
76 |
run_button = gr.Button("Run", scale=0)
|
77 |
|
78 |
result = gr.Image(label="Result", show_label=False)
|
79 |
-
|
80 |
with gr.Accordion("Advanced Settings", open=False):
|
81 |
|
82 |
-
negative_prompt = gr.Text(
|
83 |
-
label="Negative prompt",
|
84 |
-
max_lines=1,
|
85 |
-
placeholder="Enter a negative prompt",
|
86 |
-
visible=False,
|
87 |
-
)
|
88 |
-
|
89 |
seed = gr.Slider(
|
90 |
label="Seed",
|
91 |
minimum=0,
|
@@ -103,7 +76,7 @@ with gr.Blocks(css=css) as demo:
|
|
103 |
minimum=256,
|
104 |
maximum=MAX_IMAGE_SIZE,
|
105 |
step=32,
|
106 |
-
value=
|
107 |
)
|
108 |
|
109 |
height = gr.Slider(
|
@@ -111,36 +84,26 @@ with gr.Blocks(css=css) as demo:
|
|
111 |
minimum=256,
|
112 |
maximum=MAX_IMAGE_SIZE,
|
113 |
step=32,
|
114 |
-
value=
|
115 |
)
|
116 |
|
117 |
with gr.Row():
|
118 |
|
119 |
-
|
120 |
-
label="Guidance scale",
|
121 |
-
minimum=0.0,
|
122 |
-
maximum=10.0,
|
123 |
-
step=0.1,
|
124 |
-
value=0.0,
|
125 |
-
)
|
126 |
-
|
127 |
num_inference_steps = gr.Slider(
|
128 |
label="Number of inference steps",
|
129 |
minimum=1,
|
130 |
-
maximum=
|
131 |
step=1,
|
132 |
-
value=
|
133 |
)
|
134 |
|
135 |
-
gr.Examples(
|
136 |
-
examples = examples,
|
137 |
-
inputs = [prompt]
|
138 |
-
)
|
139 |
|
140 |
-
|
|
|
141 |
fn = infer,
|
142 |
-
inputs = [prompt,
|
143 |
-
outputs = [result]
|
144 |
)
|
145 |
|
146 |
-
demo.
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
+
import spaces
|
5 |
import torch
|
6 |
+
from diffusers import DiffusionPipeline
|
7 |
|
8 |
+
dtype = torch.bfloat16
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
MAX_SEED = np.iinfo(np.int32).max
|
14 |
+
MAX_IMAGE_SIZE = 2048
|
|
|
|
|
15 |
|
16 |
+
@spaces.GPU()
|
17 |
+
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
18 |
if randomize_seed:
|
19 |
seed = random.randint(0, MAX_SEED)
|
|
|
20 |
generator = torch.Generator().manual_seed(seed)
|
|
|
21 |
image = pipe(
|
22 |
+
prompt = prompt,
|
23 |
+
width = width,
|
24 |
+
height = height,
|
25 |
+
num_inference_steps = num_inference_steps,
|
26 |
+
generator = generator,
|
27 |
+
guidance_scale=0.0
|
|
|
28 |
).images[0]
|
29 |
+
return image, seed
|
30 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
css="""
|
33 |
#col-container {
|
|
|
36 |
}
|
37 |
"""
|
38 |
|
|
|
|
|
|
|
|
|
|
|
39 |
with gr.Blocks(css=css) as demo:
|
40 |
|
41 |
with gr.Column(elem_id="col-container"):
|
42 |
+
gr.Markdown(f"""# FLUX.1 [schnell]
|
43 |
+
[[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
|
|
|
44 |
""")
|
45 |
|
46 |
with gr.Row():
|
|
|
56 |
run_button = gr.Button("Run", scale=0)
|
57 |
|
58 |
result = gr.Image(label="Result", show_label=False)
|
59 |
+
|
60 |
with gr.Accordion("Advanced Settings", open=False):
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
seed = gr.Slider(
|
63 |
label="Seed",
|
64 |
minimum=0,
|
|
|
76 |
minimum=256,
|
77 |
maximum=MAX_IMAGE_SIZE,
|
78 |
step=32,
|
79 |
+
value=1024,
|
80 |
)
|
81 |
|
82 |
height = gr.Slider(
|
|
|
84 |
minimum=256,
|
85 |
maximum=MAX_IMAGE_SIZE,
|
86 |
step=32,
|
87 |
+
value=1024,
|
88 |
)
|
89 |
|
90 |
with gr.Row():
|
91 |
|
92 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
num_inference_steps = gr.Slider(
|
94 |
label="Number of inference steps",
|
95 |
minimum=1,
|
96 |
+
maximum=50,
|
97 |
step=1,
|
98 |
+
value=4,
|
99 |
)
|
100 |
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
gr.on(
|
103 |
+
triggers=[run_button.click, prompt.submit],
|
104 |
fn = infer,
|
105 |
+
inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
|
106 |
+
outputs = [result, seed]
|
107 |
)
|
108 |
|
109 |
+
demo.launch()
|