el-el-san commited on
Commit
21d80e5
·
verified ·
1 Parent(s): 8501dda

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -65
app.py CHANGED
@@ -1,47 +1,33 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
- from diffusers import DiffusionPipeline
5
  import torch
 
6
 
 
7
  device = "cuda" if torch.cuda.is_available() else "cpu"
8
 
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
17
 
18
  MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
20
-
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
22
 
 
 
23
  if randomize_seed:
24
  seed = random.randint(0, MAX_SEED)
25
-
26
  generator = torch.Generator().manual_seed(seed)
27
-
28
  image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
  ).images[0]
37
-
38
- return image
39
-
40
- examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
- ]
45
 
46
  css="""
47
  #col-container {
@@ -50,17 +36,11 @@ css="""
50
  }
51
  """
52
 
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
-
58
  with gr.Blocks(css=css) as demo:
59
 
60
  with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
  """)
65
 
66
  with gr.Row():
@@ -76,16 +56,9 @@ with gr.Blocks(css=css) as demo:
76
  run_button = gr.Button("Run", scale=0)
77
 
78
  result = gr.Image(label="Result", show_label=False)
79
-
80
  with gr.Accordion("Advanced Settings", open=False):
81
 
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
  seed = gr.Slider(
90
  label="Seed",
91
  minimum=0,
@@ -103,7 +76,7 @@ with gr.Blocks(css=css) as demo:
103
  minimum=256,
104
  maximum=MAX_IMAGE_SIZE,
105
  step=32,
106
- value=512,
107
  )
108
 
109
  height = gr.Slider(
@@ -111,36 +84,26 @@ with gr.Blocks(css=css) as demo:
111
  minimum=256,
112
  maximum=MAX_IMAGE_SIZE,
113
  step=32,
114
- value=512,
115
  )
116
 
117
  with gr.Row():
118
 
119
- guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
- step=0.1,
124
- value=0.0,
125
- )
126
-
127
  num_inference_steps = gr.Slider(
128
  label="Number of inference steps",
129
  minimum=1,
130
- maximum=12,
131
  step=1,
132
- value=2,
133
  )
134
 
135
- gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
- )
139
 
140
- run_button.click(
 
141
  fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
144
  )
145
 
146
- demo.queue().launch()
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
+ import spaces
5
  import torch
6
+ from diffusers import DiffusionPipeline
7
 
8
+ dtype = torch.bfloat16
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
 
11
+ pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
 
 
 
 
 
 
 
12
 
13
  MAX_SEED = np.iinfo(np.int32).max
14
+ MAX_IMAGE_SIZE = 2048
 
 
15
 
16
+ @spaces.GPU()
17
+ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
18
  if randomize_seed:
19
  seed = random.randint(0, MAX_SEED)
 
20
  generator = torch.Generator().manual_seed(seed)
 
21
  image = pipe(
22
+ prompt = prompt,
23
+ width = width,
24
+ height = height,
25
+ num_inference_steps = num_inference_steps,
26
+ generator = generator,
27
+ guidance_scale=0.0
 
28
  ).images[0]
29
+ return image, seed
30
+
 
 
 
 
 
 
31
 
32
  css="""
33
  #col-container {
 
36
  }
37
  """
38
 
 
 
 
 
 
39
  with gr.Blocks(css=css) as demo:
40
 
41
  with gr.Column(elem_id="col-container"):
42
+ gr.Markdown(f"""# FLUX.1 [schnell]
43
+ [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
 
44
  """)
45
 
46
  with gr.Row():
 
56
  run_button = gr.Button("Run", scale=0)
57
 
58
  result = gr.Image(label="Result", show_label=False)
59
+
60
  with gr.Accordion("Advanced Settings", open=False):
61
 
 
 
 
 
 
 
 
62
  seed = gr.Slider(
63
  label="Seed",
64
  minimum=0,
 
76
  minimum=256,
77
  maximum=MAX_IMAGE_SIZE,
78
  step=32,
79
+ value=1024,
80
  )
81
 
82
  height = gr.Slider(
 
84
  minimum=256,
85
  maximum=MAX_IMAGE_SIZE,
86
  step=32,
87
+ value=1024,
88
  )
89
 
90
  with gr.Row():
91
 
92
+
 
 
 
 
 
 
 
93
  num_inference_steps = gr.Slider(
94
  label="Number of inference steps",
95
  minimum=1,
96
+ maximum=50,
97
  step=1,
98
+ value=4,
99
  )
100
 
 
 
 
 
101
 
102
+ gr.on(
103
+ triggers=[run_button.click, prompt.submit],
104
  fn = infer,
105
+ inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
106
+ outputs = [result, seed]
107
  )
108
 
109
+ demo.launch()