Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,847 Bytes
f549a1f 8c1bccf f549a1f 11ec090 f549a1f 6bd2d1a 11ec090 fc73707 56ffc93 11ec090 56ffc93 f2e1a62 1a88280 fc73707 56ffc93 fc73707 11ec090 f549a1f f55d70c f549a1f e920d8b f549a1f 8c1bccf f55d70c 4ff938d 5de4c7b 4ff938d fc73707 5de4c7b f62d472 5de4c7b 4ff938d 072fcd3 5de4c7b 6eb86aa 5de4c7b 12d679e 5de4c7b e81b8e3 5de4c7b 87b9528 6bd2d1a 4d37124 d3f8c13 4d37124 8fc5b86 6bd2d1a f62d472 8e23a03 c81d729 f62d472 6bd2d1a f62d472 6bd2d1a f62d472 6bd2d1a 018be95 6bd2d1a f62d472 6bd2d1a 12d679e 6bd2d1a e81b8e3 6bd2d1a 11ec090 fc73707 11ec090 6bd2d1a e81b8e3 6bd2d1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
import os
import random
from typing import Callable, Dict, Optional, Tuple
import gradio as gr
import numpy as np
import PIL.Image
import spaces
import torch
from transformers import CLIPTextModel
from diffusers import AutoencoderKL, StableDiffusionXLPipeline, DDIMScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
MODEL = "eienmojiki/Starry-XL-v5.2"
HF_TOKEN = os.getenv("HF_TOKEN")
MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512"))
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
sampler_list = [
"DPM++ 2M Karras",
"DPM++ SDE Karras",
"DPM++ 2M SDE Karras",
"Euler",
"Euler a",
"DDIM",
]
examples = [
[
"""1girl, midori \(blue archive\), blue archive,
(ningen mame:0.9), ciloranko, sho \(sho lwlw\), (tianliang duohe fangdongye:0.8), ask \(askzy\), wlop,
indoors, plant, hair bow, cake, cat ears, food, smile, animal ear headphones, bare legs, short shorts, drawing \(object\), feet, legs, on back, bed, solo, green eyes, cat, table, window blinds, headphones, nintendo switch, toes, bow, toenails, looking at viewer, chips \(food\), potted plant, halo, calendar \(object\), tray, blonde hair, green halo, lying, barefoot, bare shoulders, blunt bangs, green shorts, picture frame, fake animal ears, closed mouth, shorts, handheld game console, green bow, animal ears, on bed, medium hair, knees up, upshorts, eating, potato chips, pillow, blush, dolphin shorts, ass, character doll, alternate costume,
masterpiece, newest, absurdres""",
"""bad anatomy,blurry,(worst quality:1.8),low quality,hands bad,face bad,(normal quality:1.3),bad hands,mutated hands and fingers,extra legs,extra arms,duplicate,cropped,text,jpeg,artifacts,signature,watermark,username,blurry,artist name,trademark,title,multiple view,Reference sheet,long body,multiple breasts,mutated,bad anatomy,disfigured,bad proportions,duplicate,bad feet,artist name,ugly,text font ui,missing limb,monochrome,""",
1399560451,
896,
1152,
5.0,
26,
"DPM++ 2M SDE Karras",
2
]
]
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def seed_everything(seed: int) -> torch.Generator:
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
generator = torch.Generator()
generator.manual_seed(seed)
return generator
def get_scheduler(scheduler_config: Dict, name: str) -> Optional[Callable]:
scheduler_factory_map = {
"DPM++ 2M Karras": lambda: DPMSolverMultistepScheduler.from_config(
scheduler_config, use_karras_sigmas=True
),
"DPM++ SDE Karras": lambda: DPMSolverSinglestepScheduler.from_config(
scheduler_config, use_karras_sigmas=True
),
"DPM++ 2M SDE Karras": lambda: DPMSolverMultistepScheduler.from_config(
scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++"
),
"Euler": lambda: EulerDiscreteScheduler.from_config(scheduler_config),
"Euler a": lambda: EulerAncestralDiscreteScheduler.from_config(scheduler_config),
"DDIM": lambda: DDIMScheduler.from_config(scheduler_config),
}
return scheduler_factory_map.get(name, lambda: None)()
def load_pipeline(model_name):
if torch.cuda.is_available():
pipe = StableDiffusionXLPipeline.from_pretrained(
model_name,
torch_dtype=torch.float16,
custom_pipeline="lpw_stable_diffusion_xl",
safety_checker=None,
use_safetensors=True,
add_watermarker=False,
use_auth_token=HF_TOKEN
)
pipe.to(device)
return pipe
@spaces.GPU(enable_queue=False)
def generate(
prompt: str,
negative_prompt: str = None,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 5.0,
num_inference_steps: int = 26,
sampler: str = "Euler a",
clip_skip: int = 1,
progress=gr.Progress(track_tqdm=True),
):
generator = seed_everything(seed)
pipe.scheduler = get_scheduler(pipe.scheduler.config, sampler)
pipe.text_encoder = CLIPTextModel.from_pretrained(
MODEL,
subfolder = "text_encoder",
num_hidden_layers = 12 - (clip_skip - 1),
torch_dtype = torch.float16
)
pipe.to(device)
try:
img = pipe(
prompt = prompt,
negative_prompt = negative_prompt,
width = width,
height = height,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
generator = generator,
num_images_per_prompt=1,
output_type="pil",
).images
return img, seed
except Exception as e:
print(f"An error occurred: {e}")
if torch.cuda.is_available():
pipe = load_pipeline(MODEL)
print("Loaded on Device!")
else:
pipe = None
with gr.Blocks(
theme=gr.themes.Default(
font = [gr.themes.GoogleFont("Teachers"), "Arial", "sans-serif"],
primary_hue="rose",
secondary_hue="pink"
)
) as demo:
gr.HTML(
"""
<style>
.title-container {
display: flex;
justify-content: center;
align-items: center;
height: 80vh; /* Adjust this value to position the title vertically */
}
.title {
font-size: 1.5em;
text-align: center;
color: #333;
font-family: 'Helvetica Neue', sans-serif;
text-transform: uppercase;
letter-spacing: 0.1em;
padding: 0.5em 0;
background: transparent;
}
.title span {
background: -webkit-linear-gradient(45deg, #FFBF00, #F28C28);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
</style>
<h1 class="title"><span>Starry XL 5.2</span></h1>
<p>Explore <strong>Starry XL</strong> with this intuitive demo! We always welcome your feedback, so please share any issues you encounter in the Community tab. If you love Starry XL, contribute to its development by creating a pull request.</p>
<p><strong>Model page:</strong> <a href="https://huggingface.co/eienmojiki/Starry-XL-v5.2">eienmojiki/Starry-XL-v5.2</a></p>
"""
)
with gr.Group():
prompt = gr.Text(
info="Your prompt here OwO",
label="Prompt",
placeholder="Tips: Follow the instruction at the model page for better prompt."
)
negative_prompt = gr.Text(
info="Enter your negative prompt here",
label="Negative Prompt",
placeholder="(Optional)"
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
sampler = gr.Dropdown(
label="Sampler",
choices=sampler_list,
interactive=True,
value="Euler a",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1,
maximum=20,
step=0.1,
value=5.0,
)
num_inference_steps = gr.Slider(
label="Steps",
minimum=10,
maximum=100,
step=1,
value=25,
)
clip_skip = gr.Slider(
label="Clip Skip",
minimum=1,
maximum=2,
step=1,
value=1
)
run_button = gr.Button("Run")
result = gr.Gallery(
label="Result",
columns=1,
height="512px",
preview=True,
show_label=False
)
with gr.Group():
used_seed = gr.Number(label="Used Seed", interactive=False)
gr.Examples(
examples=examples,
inputs=[
prompt,
negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
sampler,
clip_skip
],
outputs=[result, used_seed],
fn=lambda *args, **kwargs: generate(*args, **kwargs),
cache_examples=CACHE_EXAMPLES,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=[
prompt,
negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
sampler,
clip_skip
],
outputs=[result, used_seed],
api_name="run"
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(show_error=True) |