egmaminta's picture
Update app.py
8eaf54e
raw
history blame
7.69 kB
import torch
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
from einops import rearrange
import gradio
import scipy.io.wavfile
import time
from espnet2.bin.tts_inference import Text2Speech
from espnet2.utils.types import str_or_none
import call_labels
# define the feature extractor
ViT_extractor = AutoFeatureExtractor.from_pretrained('vincentclaes/mit-indoor-scenes')
# define the pretrained ViT model
ViT_model = AutoModelForImageClassification.from_pretrained('vincentclaes/mit-indoor-scenes')
# call eval() to change the forward() behaviour of the module it is called upon
ViT_model.eval()
# define the function used for the ViT model inference
def ViT_inference(image):
# disable gradient calculation/backpropagation
with torch.no_grad():
# extract features from the image input
inputs = ViT_extractor(images=image, return_tensors='pt')
# call the logits parameter only (object: SequenceClassifierOutput)
outputs = ViT_model(**inputs).logits
# remove the batch dimension
outputs = rearrange(outputs, '1 j->j')
# use the softmax function to convert the logits into probabilities
outputs = torch.nn.functional.softmax(outputs, dim=0)
# convert the data type from tensor to a numpy array
outputs = outputs.cpu().numpy()
# returns a key-value pair composed of id labels and its corresponding probabilities
# return {labels[str(i)]: float(outputs[i]) for i in range(len(labels))} '(Uncomment this for debugging purposes only.)'
# define a dictionary containing the key-value pair composed of id labels and its corresponding probabilities
logit_dict = {labels[str(i)]: float(outputs[i]) for i in range(len(labels))}
# retrieve the label with the maximum probability
max_key = max(logit_dict, key=logit_dict.get)
# format it as a string/text and pass it to a variable
tts_input = 'In front of you is the {}.'.format(str(max_key))
# returns a text format used as inputs to the text-to-speech model
return tts_input
# define the ViT gradio interface
ViT_interface = gradio.Interface(fn=ViT_inference,
inputs=gradio.inputs.Image(shape=(224,224),
image_mode='RGB',
source='upload',
tool='editor',
type='pil',
label='Input: Indoor Scene Image'),
outputs='text')
# define the pretrained TTS model
TTS_model = Text2Speech.from_pretrained(
# call on the trained model
model_tag=str_or_none('kan-bayashi/ljspeech_vits'),
# set the vocoder
vocoder_tag=str_or_none('none'),
# set the device it should use
device='cpu',
# only for Tacotron 2 & Transformer
threshold=0.5,
# only for Tacotron 2
minlenratio=0.0,
maxlenratio=10.0,
use_att_constraint=False,
backward_window=1,
forward_window=3,
# only for FastSpeech & FastSpeech2 & VITS
speed_control_alpha=1.0,
# only for VITS
noise_scale=0.333,
noise_scale_dur=0.333,
)
# define the function used for the TTS model inference
def TTS_inference(text):
with torch.no_grad():
wav = TTS_model(text)['wav']
scipy.io.wavfile.write('out.wav',TTS_model.fs , wav.view(-1).cpu().numpy())
return 'out.wav'
# define the TTS gradio interface
TTS_interface = gradio.Interface(fn=TTS_inference,
inputs='text',
outputs=gradio.outputs.Audio(type='file', label='Output: Audio'))
# Combine the two models using the gradio.mix.Series
img2speech = gradio.mix.Series(ViT_interface, TTS_interface,
theme='grass',
live='True',
layout='horizontal',
title='''Hearing What's In Front of You: Indoor Scene Recognition-to-Speech''',
description='For the blind and visually-impaired people. A smart and easy-to-use indoor scene classifier-to-speech. Start by uploading an input image of an indoor scene. The output is an audio file saying what you are externally facing in front of.',
article='''<h2>Additional Information</h2><p style='text-align: justify'>This indoor scene classifier employs the <b><a href='https://huggingface.co/google/vit-base-patch16-224-in21k' target='_blank'>google/vit-base-patch16-224-in21k</a></b>, a <b>Vision Transformer (ViT)</b> model pre-trained on the <b><a href='https://github.com/Alibaba-MIIL/ImageNet21K' target='_blank'>ImageNet-21k</a></b> (14 million images, 21,843 classes) at a resolution of 224 pixels by 224 pixels and was first introduced in the paper <b><a href='https://arxiv.org/abs/2010.11929' target='_blank'>An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale</a></b> by Dosovitskiy et al. It was then fine-tuned on the <b><a href='https://www.kaggle.com/itsahmad/indoor-scenes-cvpr-2019' target='_blank'>MIT Indoor Scenes</a></b> data set from Kaggle. The source model used in this space is from <b><a href='https://huggingface.co/vincentclaes/mit-indoor-scenes' target='_blank'>vincentclaes/mit-indoor-scenes</a></b>.</p>
<p style='text-align: justify'>For further research on the Vision Transformer, the original GitHub repository is found in <b><a href='https://github.com/google-research/vision_transformer' target='_blank'>this link</a></b>.</p>
<p style='text-align: justify'>The Text-to-Speech model is from <b><a href='https://huggingface.co/espnet/kan-bayashi_ljspeech_vits' target='_blank'>espnet/kan-bayashi_ljspeech_vits</a></b>. It was imported from <b><a href='https://zenodo.org/record/5443814/' target='_blank'>this link</a></b> and was trained using the ljspeech/tts1 recipe in <b><a href='https://github.com/espnet/espnet/' target='_blank'>ESPnet: end-to-end speech processing toolkit</a></b>. The published work being referenced by this model is found in <b><a href='https://arxiv.org/pdf/1804.00015.pdf' target='_blank'>this link</a></b>.</p>
<h2>Disclaimer</h2>
<p style='text-align: justify'>The team releasing the Vision Transformer did not write a model card for it via Hugging Face. Hence, the Vision Transformer model card released in the Hugging Face Models library has been written by the Hugging Face team.</p>
<h2>Limitations</h2>
<p style='text-align: justify'>The model was trained only on 67 classes (indoor scenes). Hence, the model should perform better if the input indoor scene image belongs to one of the target classes it was trained on. For demonstration purposes, it temporarily accommodates English as its language but it is flexible and versatile to other common major languages.</p>
<h2>Credits</h2>
<p style='text-align: justify'>I would like to express my gratitude to <b><a href='https://github.com/vincentclaes' target='_blank'>Vincent Claes</a></b> and <b><a href='https://github.com/siddhu001' target='_blank'>Siddhant Arora</a></b> for uploading the ViT and TTS models in the Hugging Face Models library, respectively, purely for academic and research purposes. All credits go to these two brilliant people.''',
allow_flagging='never').launch()