DmitrMakeev
commited on
Create app_base.py
Browse files- app_base.py +276 -0
app_base.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
import os
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import PIL.Image
|
7 |
+
from diffusers.utils import load_image
|
8 |
+
|
9 |
+
from model import ADAPTER_NAMES, Model
|
10 |
+
from utils import (
|
11 |
+
DEFAULT_STYLE_NAME,
|
12 |
+
MAX_SEED,
|
13 |
+
STYLE_NAMES,
|
14 |
+
apply_style,
|
15 |
+
randomize_seed_fn,
|
16 |
+
)
|
17 |
+
|
18 |
+
CACHE_EXAMPLES = os.environ.get("CACHE_EXAMPLES") == "1"
|
19 |
+
|
20 |
+
|
21 |
+
def create_demo(model: Model) -> gr.Blocks:
|
22 |
+
def run(
|
23 |
+
image: PIL.Image.Image,
|
24 |
+
prompt: str,
|
25 |
+
negative_prompt: str,
|
26 |
+
adapter_name: str,
|
27 |
+
style_name: str = DEFAULT_STYLE_NAME,
|
28 |
+
num_inference_steps: int = 30,
|
29 |
+
guidance_scale: float = 5.0,
|
30 |
+
adapter_conditioning_scale: float = 1.0,
|
31 |
+
adapter_conditioning_factor: float = 1.0,
|
32 |
+
seed: int = 0,
|
33 |
+
apply_preprocess: bool = True,
|
34 |
+
progress=gr.Progress(track_tqdm=True),
|
35 |
+
) -> list[PIL.Image.Image]:
|
36 |
+
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
37 |
+
|
38 |
+
return model.run(
|
39 |
+
image=image,
|
40 |
+
prompt=prompt,
|
41 |
+
negative_prompt=negative_prompt,
|
42 |
+
adapter_name=adapter_name,
|
43 |
+
num_inference_steps=num_inference_steps,
|
44 |
+
guidance_scale=guidance_scale,
|
45 |
+
adapter_conditioning_scale=adapter_conditioning_scale,
|
46 |
+
adapter_conditioning_factor=adapter_conditioning_factor,
|
47 |
+
seed=seed,
|
48 |
+
apply_preprocess=apply_preprocess,
|
49 |
+
)
|
50 |
+
|
51 |
+
def process_example(
|
52 |
+
image_url: str,
|
53 |
+
prompt: str,
|
54 |
+
adapter_name: str,
|
55 |
+
guidance_scale: float,
|
56 |
+
adapter_conditioning_scale: float,
|
57 |
+
seed: int,
|
58 |
+
apply_preprocess: bool,
|
59 |
+
) -> list[PIL.Image.Image]:
|
60 |
+
image = load_image(image_url)
|
61 |
+
return run(
|
62 |
+
image=image,
|
63 |
+
prompt=prompt,
|
64 |
+
negative_prompt="extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured",
|
65 |
+
adapter_name=adapter_name,
|
66 |
+
style_name="(No style)",
|
67 |
+
guidance_scale=guidance_scale,
|
68 |
+
adapter_conditioning_scale=adapter_conditioning_scale,
|
69 |
+
seed=seed,
|
70 |
+
apply_preprocess=apply_preprocess,
|
71 |
+
)
|
72 |
+
|
73 |
+
examples = [
|
74 |
+
[
|
75 |
+
"assets/org_canny.jpg",
|
76 |
+
"Mystical fairy in real, magic, 4k picture, high quality",
|
77 |
+
"canny",
|
78 |
+
7.5,
|
79 |
+
0.75,
|
80 |
+
42,
|
81 |
+
True,
|
82 |
+
],
|
83 |
+
[
|
84 |
+
"assets/org_sketch.png",
|
85 |
+
"a robot, mount fuji in the background, 4k photo, highly detailed",
|
86 |
+
"sketch",
|
87 |
+
7.5,
|
88 |
+
1.0,
|
89 |
+
42,
|
90 |
+
True,
|
91 |
+
],
|
92 |
+
[
|
93 |
+
"assets/org_lin.jpg",
|
94 |
+
"Ice dragon roar, 4k photo",
|
95 |
+
"lineart",
|
96 |
+
7.5,
|
97 |
+
0.8,
|
98 |
+
42,
|
99 |
+
True,
|
100 |
+
],
|
101 |
+
[
|
102 |
+
"assets/org_mid.jpg",
|
103 |
+
"A photo of a room, 4k photo, highly detailed",
|
104 |
+
"depth-midas",
|
105 |
+
7.5,
|
106 |
+
1.0,
|
107 |
+
42,
|
108 |
+
True,
|
109 |
+
],
|
110 |
+
[
|
111 |
+
"assets/org_zoe.jpg",
|
112 |
+
"A photo of a orchid, 4k photo, highly detailed",
|
113 |
+
"depth-zoe",
|
114 |
+
5.0,
|
115 |
+
1.0,
|
116 |
+
42,
|
117 |
+
True,
|
118 |
+
],
|
119 |
+
[
|
120 |
+
"assets/people.jpg",
|
121 |
+
"A couple, 4k photo, highly detailed",
|
122 |
+
"openpose",
|
123 |
+
5.0,
|
124 |
+
1.0,
|
125 |
+
42,
|
126 |
+
True,
|
127 |
+
],
|
128 |
+
[
|
129 |
+
"assets/depth-midas-image.png",
|
130 |
+
"stormtrooper lecture, 4k photo, highly detailed",
|
131 |
+
"depth-midas",
|
132 |
+
7.5,
|
133 |
+
1.0,
|
134 |
+
42,
|
135 |
+
False,
|
136 |
+
],
|
137 |
+
[
|
138 |
+
"assets/openpose-image.png",
|
139 |
+
"spiderman, 4k photo, highly detailed",
|
140 |
+
"openpose",
|
141 |
+
5.0,
|
142 |
+
1.0,
|
143 |
+
42,
|
144 |
+
False,
|
145 |
+
],
|
146 |
+
]
|
147 |
+
|
148 |
+
with gr.Blocks() as demo:
|
149 |
+
with gr.Row():
|
150 |
+
with gr.Column():
|
151 |
+
with gr.Group():
|
152 |
+
image = gr.Image(label="Input image", type="pil", height=600)
|
153 |
+
prompt = gr.Textbox(label="Prompt")
|
154 |
+
with gr.Row():
|
155 |
+
adapter_name = gr.Dropdown(label="Adapter name", choices=ADAPTER_NAMES, value=ADAPTER_NAMES[0])
|
156 |
+
style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
|
157 |
+
run_button = gr.Button("Run")
|
158 |
+
with gr.Accordion("Advanced options", open=False):
|
159 |
+
apply_preprocess = gr.Checkbox(label="Apply preprocess", value=True)
|
160 |
+
negative_prompt = gr.Textbox(
|
161 |
+
label="Negative prompt",
|
162 |
+
value=" extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured",
|
163 |
+
)
|
164 |
+
num_inference_steps = gr.Slider(
|
165 |
+
label="Number of steps",
|
166 |
+
minimum=1,
|
167 |
+
maximum=Model.MAX_NUM_INFERENCE_STEPS,
|
168 |
+
step=1,
|
169 |
+
value=25,
|
170 |
+
)
|
171 |
+
guidance_scale = gr.Slider(
|
172 |
+
label="Guidance scale",
|
173 |
+
minimum=0.1,
|
174 |
+
maximum=30.0,
|
175 |
+
step=0.1,
|
176 |
+
value=5.0,
|
177 |
+
)
|
178 |
+
adapter_conditioning_scale = gr.Slider(
|
179 |
+
label="Adapter conditioning scale",
|
180 |
+
minimum=0.5,
|
181 |
+
maximum=1,
|
182 |
+
step=0.1,
|
183 |
+
value=1.0,
|
184 |
+
)
|
185 |
+
adapter_conditioning_factor = gr.Slider(
|
186 |
+
label="Adapter conditioning factor",
|
187 |
+
info="Fraction of timesteps for which adapter should be applied",
|
188 |
+
minimum=0.5,
|
189 |
+
maximum=1.0,
|
190 |
+
step=0.1,
|
191 |
+
value=1.0,
|
192 |
+
)
|
193 |
+
seed = gr.Slider(
|
194 |
+
label="Seed",
|
195 |
+
minimum=0,
|
196 |
+
maximum=MAX_SEED,
|
197 |
+
step=1,
|
198 |
+
value=42,
|
199 |
+
)
|
200 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
|
201 |
+
with gr.Column():
|
202 |
+
result = gr.Gallery(label="Result", columns=2, height=600, object_fit="scale-down", show_label=False)
|
203 |
+
|
204 |
+
gr.Examples(
|
205 |
+
examples=examples,
|
206 |
+
inputs=[
|
207 |
+
image,
|
208 |
+
prompt,
|
209 |
+
adapter_name,
|
210 |
+
guidance_scale,
|
211 |
+
adapter_conditioning_scale,
|
212 |
+
seed,
|
213 |
+
apply_preprocess,
|
214 |
+
],
|
215 |
+
outputs=result,
|
216 |
+
fn=process_example,
|
217 |
+
cache_examples=CACHE_EXAMPLES,
|
218 |
+
)
|
219 |
+
|
220 |
+
inputs = [
|
221 |
+
image,
|
222 |
+
prompt,
|
223 |
+
negative_prompt,
|
224 |
+
adapter_name,
|
225 |
+
style,
|
226 |
+
num_inference_steps,
|
227 |
+
guidance_scale,
|
228 |
+
adapter_conditioning_scale,
|
229 |
+
adapter_conditioning_factor,
|
230 |
+
seed,
|
231 |
+
apply_preprocess,
|
232 |
+
]
|
233 |
+
prompt.submit(
|
234 |
+
fn=randomize_seed_fn,
|
235 |
+
inputs=[seed, randomize_seed],
|
236 |
+
outputs=seed,
|
237 |
+
queue=False,
|
238 |
+
api_name=False,
|
239 |
+
).then(
|
240 |
+
fn=run,
|
241 |
+
inputs=inputs,
|
242 |
+
outputs=result,
|
243 |
+
api_name=False,
|
244 |
+
)
|
245 |
+
negative_prompt.submit(
|
246 |
+
fn=randomize_seed_fn,
|
247 |
+
inputs=[seed, randomize_seed],
|
248 |
+
outputs=seed,
|
249 |
+
queue=False,
|
250 |
+
api_name=False,
|
251 |
+
).then(
|
252 |
+
fn=run,
|
253 |
+
inputs=inputs,
|
254 |
+
outputs=result,
|
255 |
+
api_name=False,
|
256 |
+
)
|
257 |
+
run_button.click(
|
258 |
+
fn=randomize_seed_fn,
|
259 |
+
inputs=[seed, randomize_seed],
|
260 |
+
outputs=seed,
|
261 |
+
queue=False,
|
262 |
+
api_name=False,
|
263 |
+
).then(
|
264 |
+
fn=run,
|
265 |
+
inputs=inputs,
|
266 |
+
outputs=result,
|
267 |
+
api_name="run",
|
268 |
+
)
|
269 |
+
|
270 |
+
return demo
|
271 |
+
|
272 |
+
|
273 |
+
if __name__ == "__main__":
|
274 |
+
model = Model(ADAPTER_NAMES[0])
|
275 |
+
demo = create_demo(model)
|
276 |
+
demo.queue(max_size=20).launch()
|