Spaces:
Running
Running
import { MgpstrForSceneTextRecognition, MgpstrProcessor, RawImage } from 'https://cdn.jsdelivr.net/npm/@huggingface/[email protected]'; | |
// Reference the elements that we will need | |
const status = document.getElementById('status'); | |
const fileUpload = document.getElementById('upload'); | |
const imageContainer = document.getElementById('container'); | |
const example = document.getElementById('example'); | |
// Load Model | |
status.textContent = 'Loading model...'; | |
const model_id = 'onnx-community/mgp-str-base'; | |
const model = await MgpstrForSceneTextRecognition.from_pretrained(model_id); | |
const processor = await MgpstrProcessor.from_pretrained(model_id); | |
status.textContent = 'Ready'; | |
// Load image from the IIIT-5k dataset | |
const EXAMPLE_URL = "https://i.postimg.cc/ZKwLg2Gw/367-14.png"; | |
example.addEventListener('click', (e) => { | |
e.preventDefault(); | |
detect(EXAMPLE_URL); | |
}); | |
fileUpload.addEventListener('change', async function (e) { | |
const file = e.target.files[0]; | |
if (!file) { | |
return; | |
} | |
const file_url = URL.createObjectURL(file); | |
await detect(file_url); | |
}); | |
// Detect objects in the image | |
async function detect(img) { | |
imageContainer.innerHTML = ''; | |
imageContainer.style.backgroundImage = `url(${img})`; | |
status.textContent = 'Analysing...'; | |
const image = await RawImage.read(img); | |
// Preprocess the image | |
const result = await processor(image); | |
// Perform inference | |
const outputs = await model(result); | |
// Decode the model outputs | |
const generated_text = processor.batch_decode(outputs.logits).generated_text; | |
status.textContent = generated_text[0]; | |
console.log(generated_text); | |
} |