echo840's picture
Create app.py
f029b51 verified
raw
history blame
5.75 kB
import ast
import argparse
import glob
import pickle
import gradio as gr
import numpy as np
import pandas as pd
block_css = """
#notice_markdown {
font-size: 104%
}
#notice_markdown th {
display: none;
}
#notice_markdown td {
padding-top: 6px;
padding-bottom: 6px;
}
#leaderboard_markdown {
font-size: 104%
}
#leaderboard_markdown td {
padding-top: 6px;
padding-bottom: 6px;
}
#leaderboard_dataframe td {
line-height: 0.1em;
}
footer {
display:none !important
}
.image-container {
display: flex;
align-items: center;
padding: 1px;
}
.image-container img {
margin: 0 30px;
height: 20px;
max-height: 100%;
width: auto;
max-width: 20%;
}
"""
def model_hyperlink(model_name, link):
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
def load_leaderboard_table_csv(filename, add_hyperlink=True):
lines = open(filename).readlines()
heads = [v.strip() for v in lines[0].split(",")]
rows = []
for i in range(1, len(lines)):
row = [v.strip() for v in lines[i].split(",")]
for j in range(len(heads)):
item = {}
for h, v in zip(heads, row):
if h != "Model" and h != "Link":
item[h] = int(v)
else:
item[h] = v
if add_hyperlink:
item["Model"] = model_hyperlink(item["Model"], item["Link"])
rows.append(item)
return rows
def get_arena_table(model_table_df):
# sort by rating
model_table_df = model_table_df.sort_values(by=["Final Score"], ascending=False)
values = []
for i in range(len(model_table_df)):
row = []
model_key = model_table_df.index[i]
model_name = model_table_df["Model"].values[model_key]
# rank
row.append(i + 1)
# model display name
row.append(model_name)
row.append(
model_table_df["Text Recognition"].values[model_key]
)
row.append(
model_table_df["Scene Text-Centric VQA"].values[model_key]
)
row.append(
model_table_df["Doc-Oriented VQA"].values[model_key]
)
row.append(
model_table_df["KIE"].values[model_key]
)
row.append(
model_table_df["HMER"].values[model_key]
)
row.append(
model_table_df["Final Score"].values[model_key]
)
values.append(row)
return values
def build_leaderboard_tab(leaderboard_table_file, show_plot=False):
if leaderboard_table_file:
data = load_leaderboard_table_csv(leaderboard_table_file)
model_table_df = pd.DataFrame(data)
md_head = f"""
# πŸ† OCRBench Leaderboard
| [GitHub](https://github.com/Yuliang-Liu/MultimodalOCR) | [Paper](https://arxiv.org/abs/2305.07895) |
"""
gr.Markdown(md_head, elem_id="leaderboard_markdown")
with gr.Tabs() as tabs:
# arena table
arena_table_vals = get_arena_table(model_table_df)
with gr.Tab("OCRBench", id=0):
md = "OCRBench is a comprehensive evaluation benchmark designed to assess the OCR capabilities of Large Multimodal Models. It comprises five components: Text Recognition, SceneText-Centric VQA, Document-Oriented VQA, Key Information Extraction, and Handwritten Mathematical Expression Recognition. The benchmark includes 1000 question-answer pairs, and all the answers undergo manual verification and correction to ensure a more precise evaluation."
gr.Markdown(md, elem_id="leaderboard_markdown")
gr.Dataframe(
headers=[
"Rank",
"Name",
"Text Recognition",
"Scene Text-Centric VQA",
"Doc-Oriented VQA",
"KIE",
"HMER",
"Final Score",
],
datatype=[
"str",
"markdown",
"number",
"number",
"number",
"number",
"number",
"number",
],
value=arena_table_vals,
elem_id="arena_leaderboard_dataframe",
height=700,
column_widths=[60, 120, 150, 200, 180, 80, 80, 160],
wrap=True,
)
else:
pass
md_tail = f"""
# Notice
If you would like to include your model in the OCRBench leaderboard, please follow the evaluation instructions provided on [GitHub](https://github.com/Yuliang-Liu/MultimodalOCR) and feel free to contact us via email at [email protected]. We will update the leaderboard in time."""
gr.Markdown(md_tail, elem_id="leaderboard_markdown")
def build_demo(leaderboard_table_file):
text_size = gr.themes.sizes.text_lg
with gr.Blocks(
title="OCRBench Leaderboard",
theme=gr.themes.Base(text_size=text_size),
css=block_css,
) as demo:
leader_components = build_leaderboard_tab(
leaderboard_table_file, show_plot=True
)
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true")
parser.add_argument("--OCRBench_file", type=str, default="./OCRBench.csv")
args = parser.parse_args()
demo = build_demo(args.OCRBench_file)
demo.launch()