Spaces:
Runtime error
Runtime error
File size: 2,107 Bytes
8fa16e3 9a99e8b 8fa16e3 fb7b32d eb027e5 8fa16e3 1742a72 8fa16e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import os
os.system('pip install paddlepaddle')
os.system('pip install paddleocr')
from paddleocr import PaddleOCR, draw_ocr
from PIL import Image
import gradio as gr
import torch
torch.hub.download_url_to_file('https://i.imgur.com/aqMBT0i.jpg', 'example.jpg')
def inference(img, lang):
ocr = PaddleOCR(use_angle_cls=True, lang=lang,use_gpu=False)
img_path = img.name
result = ocr.ocr(img_path, cls=True)
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='Roboto-Light.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
return 'result.jpg', result[0][1][0]
title = 'PaddleOCR'
description = 'Gradio demo for PaddleOCR. PaddleOCR demo supports Chinese, English, French, German, Korean and Japanese.To use it, simply upload your image and choose a language from the dropdown menu, or click one of the examples to load them. Read more at the links below.'
article = "<p style='text-align: center'><a href='https://www.paddlepaddle.org.cn/hub/scene/ocr'>Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)</a> | <a href='https://github.com/PaddlePaddle/PaddleOCR'>Github Repo</a></p>"
examples = [['example.jpg','en']]
css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}"
gr.Interface(
inference,
[gr.inputs.Image(type='file', label='Input'),gr.inputs.Dropdown(choices=['ch', 'en', 'fr', 'german', 'korean', 'japan'], type="value", default='en', label='language')],
[gr.outputs.Image(type='file', label='Output'), gr.outputs.Textbox(type='str', label='Prediction')],
title=title,
description=description,
article=article,
examples=examples,
css=css,
enable_queue=True
).launch(debug=True)
|