eaglelandsonce commited on
Commit
8259a87
1 Parent(s): cc6f9f3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +109 -1
app.py CHANGED
@@ -1 +1,109 @@
1
- # first page
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+ # Set the title of the page
4
+ st.title("TensorFlow and Keras Course Overview")
5
+
6
+ # Introduction section
7
+ st.header("1. Introduction to TensorFlow and Keras")
8
+ st.subheader("Example: Build a simple linear regression model to predict house prices")
9
+ st.markdown("""
10
+ **Concepts Covered:**
11
+ - Basic TensorFlow and Keras syntax
12
+ - Linear regression
13
+ - Mean squared error
14
+ """)
15
+
16
+ # Building and Training a Simple Neural Network section
17
+ st.header("2. Building and Training a Simple Neural Network")
18
+ st.subheader("Example: Create a neural network to classify handwritten digits from the MNIST dataset")
19
+ st.markdown("""
20
+ **Concepts Covered:**
21
+ - Dense layers
22
+ - Activation functions
23
+ - Training loops
24
+ - Evaluation
25
+ """)
26
+
27
+ # Convolutional Neural Networks (CNNs) section
28
+ st.header("3. Convolutional Neural Networks (CNNs)")
29
+ st.subheader("Example: Develop a CNN to classify images from the CIFAR-10 dataset")
30
+ st.markdown("""
31
+ **Concepts Covered:**
32
+ - Convolutional layers
33
+ - Pooling layers
34
+ - Data augmentation
35
+ - Dropout
36
+ """)
37
+
38
+ # Transfer Learning section
39
+ st.header("4. Transfer Learning")
40
+ st.subheader("Example: Use a pre-trained model (e.g., VGG16) for image classification on a custom dataset")
41
+ st.markdown("""
42
+ **Concepts Covered:**
43
+ - Transfer learning
44
+ - Fine-tuning
45
+ - Feature extraction
46
+ """)
47
+
48
+ # Recurrent Neural Networks (RNNs) section
49
+ st.header("5. Recurrent Neural Networks (RNNs)")
50
+ st.subheader("Example: Build an RNN to predict stock prices based on historical data")
51
+ st.markdown("""
52
+ **Concepts Covered:**
53
+ - Recurrent layers
54
+ - LSTM
55
+ - GRU
56
+ - Time series forecasting
57
+ """)
58
+
59
+ # Natural Language Processing (NLP) with Keras section
60
+ st.header("6. Natural Language Processing (NLP) with Keras")
61
+ st.subheader("Example: Create a text classification model to classify movie reviews as positive or negative")
62
+ st.markdown("""
63
+ **Concepts Covered:**
64
+ - Tokenization
65
+ - Embedding layers
66
+ - Sequence padding
67
+ - Sentiment analysis
68
+ """)
69
+
70
+ # Autoencoders for Anomaly Detection section
71
+ st.header("7. Autoencoders for Anomaly Detection")
72
+ st.subheader("Example: Implement an autoencoder to detect anomalies in credit card transactions")
73
+ st.markdown("""
74
+ **Concepts Covered:**
75
+ - Encoder-decoder architecture
76
+ - Reconstruction loss
77
+ - Anomaly detection
78
+ """)
79
+
80
+ # Generative Adversarial Networks (GANs) section
81
+ st.header("8. Generative Adversarial Networks (GANs)")
82
+ st.subheader("Example: Develop a GAN to generate synthetic images of handwritten digits")
83
+ st.markdown("""
84
+ **Concepts Covered:**
85
+ - Generator and discriminator networks
86
+ - Adversarial training
87
+ - Loss functions
88
+ """)
89
+
90
+ # Hyperparameter Tuning with Keras Tuner section
91
+ st.header("9. Hyperparameter Tuning with Keras Tuner")
92
+ st.subheader("Example: Use Keras Tuner to optimize hyperparameters for a neural network model")
93
+ st.markdown("""
94
+ **Concepts Covered:**
95
+ - Hyperparameter tuning
96
+ - Keras Tuner API
97
+ - Performance optimization
98
+ """)
99
+
100
+ # Deploying a TensorFlow Model section
101
+ st.header("10. Deploying a TensorFlow Model")
102
+ st.subheader("Example: Deploy a trained model as a web service using TensorFlow Serving and create a simple web app to interact with it")
103
+ st.markdown("""
104
+ **Concepts Covered:**
105
+ - Model saving and loading
106
+ - TensorFlow Serving
107
+ - REST API
108
+ - Deployment
109
+ """)