Spaces:
Sleeping
Sleeping
import streamlit as st | |
# Set the title of the page | |
st.title("TensorFlow and Keras Course Overview") | |
# Embed the YouTube video | |
st.video("https://www.youtube.com/watch?v=FRoYik9P9Ko") | |
# Add some description or additional content if needed | |
st.write(""" | |
Welcome to the TensorFlow Getting Started Class Meetup! | |
In this session, we will cover the basics of TensorFlow and how you can get started with building machine learning models using prompt engineering. | |
""") | |
# Introduction section | |
st.header("1. Introduction to TensorFlow and Keras") | |
st.subheader("Example: Build a simple linear regression model to predict house prices") | |
st.markdown(""" | |
**Concepts Covered:** | |
- Basic TensorFlow and Keras syntax | |
- Linear regression | |
- Mean squared error | |
""") | |
# Building and Training a Simple Neural Network section | |
st.header("2. Building and Training a Simple Neural Network") | |
st.subheader("Example: Create a neural network to classify handwritten digits from the MNIST dataset") | |
st.markdown(""" | |
**Concepts Covered:** | |
- Dense layers | |
- Activation functions | |
- Training loops | |
- Evaluation | |
""") | |
# Convolutional Neural Networks (CNNs) section | |
st.header("3. Convolutional Neural Networks (CNNs)") | |
st.subheader("Example: Develop a CNN to classify images from the CIFAR-10 dataset") | |
st.markdown(""" | |
**Concepts Covered:** | |
- Convolutional layers | |
- Pooling layers | |
- Data augmentation | |
- Dropout | |
""") | |
# Transfer Learning section | |
st.header("4. Transfer Learning") | |
st.subheader("Example: Use a pre-trained model (e.g., VGG16) for image classification on a custom dataset") | |
st.markdown(""" | |
**Concepts Covered:** | |
- Transfer learning | |
- Fine-tuning | |
- Feature extraction | |
""") | |
# Recurrent Neural Networks (RNNs) section | |
st.header("5. Recurrent Neural Networks (RNNs)") | |
st.subheader("Example: Build an RNN to predict stock prices based on historical data") | |
st.markdown(""" | |
**Concepts Covered:** | |
- Recurrent layers | |
- LSTM | |
- GRU | |
- Time series forecasting | |
""") | |
# Natural Language Processing (NLP) with Keras section | |
st.header("6. Natural Language Processing (NLP) with Keras") | |
st.subheader("Example: Create a text classification model to classify movie reviews as positive or negative") | |
st.markdown(""" | |
**Concepts Covered:** | |
- Tokenization | |
- Embedding layers | |
- Sequence padding | |
- Sentiment analysis | |
""") | |
# Autoencoders for Anomaly Detection section | |
st.header("7. Autoencoders for Anomaly Detection") | |
st.subheader("Example: Implement an autoencoder to detect anomalies in credit card transactions") | |
st.markdown(""" | |
**Concepts Covered:** | |
- Encoder-decoder architecture | |
- Reconstruction loss | |
- Anomaly detection | |
""") | |
# Generative Adversarial Networks (GANs) section | |
st.header("8. Generative Adversarial Networks (GANs)") | |
st.subheader("Example: Develop a GAN to generate synthetic images of handwritten digits") | |
st.markdown(""" | |
**Concepts Covered:** | |
- Generator and discriminator networks | |
- Adversarial training | |
- Loss functions | |
""") | |
# Hyperparameter Tuning with Keras Tuner section | |
st.header("9. Hyperparameter Tuning with Keras Tuner") | |
st.subheader("Example: Use Keras Tuner to optimize hyperparameters for a neural network model") | |
st.markdown(""" | |
**Concepts Covered:** | |
- Hyperparameter tuning | |
- Keras Tuner API | |
- Performance optimization | |
""") | |
# Deploying a TensorFlow Model section | |
st.header("10. Deploying a TensorFlow Model") | |
st.subheader("Example: Deploy a trained model as a web service using TensorFlow Serving and create a simple web app to interact with it") | |
st.markdown(""" | |
**Concepts Covered:** | |
- Model saving and loading | |
- TensorFlow Serving | |
- REST API | |
- Deployment | |
""") | |