File size: 6,194 Bytes
08396cc
 
61ff057
08396cc
 
 
 
61ff057
 
08396cc
61ff057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08396cc
61ff057
08396cc
 
 
 
61ff057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08396cc
 
 
 
 
61ff057
3c9d3d2
 
 
 
 
 
 
 
 
 
 
 
 
 
1017d26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff97f7d
1017d26
 
 
 
 
 
ac52b00
1017d26
 
ff97f7d
1017d26
 
 
 
 
 
 
 
 
ac52b00
1017d26
 
 
 
 
 
 
ac52b00
1017d26
 
 
ff97f7d
1017d26
 
d474adf
3c9d3d2
 
 
f8e7df2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d474adf
 
3c9d3d2
 
d474adf
3c9d3d2
 
d474adf
 
3c9d3d2
 
 
61ff057
 
 
 
 
 
 
 
08396cc
 
 
 
 
 
 
 
 
61ff057
 
08396cc
 
 
 
 
 
 
 
 
61ff057
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import streamlit as st
from qiskit import QuantumCircuit, transpile
from qiskit_aer import AerSimulator
import io
import sys

# Title for the Streamlit app
st.title("Quantum Circuit Simulator with Examples")
st.write("Select a quantum circuit example to load and simulate.")

# Define 20 quantum circuit examples (easy to complicated)
examples = {
    "1. Empty Circuit": """
from qiskit import QuantumCircuit
qc = QuantumCircuit(1)
print("Empty circuit created.")
""",
    "2. Single Qubit Hadamard": """
from qiskit import QuantumCircuit
from qiskit_aer import AerSimulator

qc = QuantumCircuit(1, 1)
qc.h(0)
qc.measure(0, 0)

simulator = AerSimulator()
compiled_circuit = transpile(qc, simulator)
result = simulator.run(compiled_circuit, shots=1024).result()
counts = result.get_counts()
print(counts)
""",
    "3. Bell State": """
from qiskit import QuantumCircuit
from qiskit_aer import AerSimulator

qc = QuantumCircuit(2, 2)
qc.h(0)
qc.cx(0, 1)
qc.measure([0, 1], [0, 1])

simulator = AerSimulator()
compiled_circuit = transpile(qc, simulator)
result = simulator.run(compiled_circuit, shots=1024).result()
counts = result.get_counts()
print(counts)
""",
    "4. GHZ State": """
from qiskit import QuantumCircuit
from qiskit_aer import AerSimulator

qc = QuantumCircuit(3, 3)
qc.h(0)
qc.cx(0, 1)
qc.cx(1, 2)
qc.measure([0, 1, 2], [0, 1, 2])

simulator = AerSimulator()
compiled_circuit = transpile(qc, simulator)
result = simulator.run(compiled_circuit, shots=1024).result()
counts = result.get_counts()
print(counts)
""",
    "5. Deutsch Algorithm": """
from qiskit import QuantumCircuit
from qiskit_aer import AerSimulator

qc = QuantumCircuit(2, 1)
qc.h([0, 1])
qc.cx(0, 1)
qc.h(0)
qc.measure(0, 0)

simulator = AerSimulator()
compiled_circuit = transpile(qc, simulator)
result = simulator.run(compiled_circuit, shots=1024).result()
counts = result.get_counts()
print(counts)
""",
    "6. Quantum Teleportation": """
from qiskit import QuantumCircuit
from qiskit_aer import AerSimulator

qc = QuantumCircuit(3, 3)
qc.h(1)
qc.cx(1, 2)
qc.cx(0, 1)
qc.h(0)
qc.measure([0, 1], [0, 1])
qc.cx(1, 2)
qc.cz(0, 2)
qc.measure(2, 2)

simulator = AerSimulator()
compiled_circuit = transpile(qc, simulator)
result = simulator.run(compiled_circuit, shots=1024).result()
counts = result.get_counts()
print(counts)
""",
    "7. DNA Base Pair Encoding": """
from qiskit import QuantumCircuit
qc = QuantumCircuit(2, 2)

# DNA Base Pair Encoding: A -> 00, T -> 01, G -> 10, C -> 11
qc.x(0)  # Example encoding for T (01)
qc.measure([0, 1], [0, 1])

simulator = AerSimulator()
compiled_circuit = transpile(qc, simulator)
result = simulator.run(compiled_circuit, shots=1024).result()
counts = result.get_counts()
print(counts)
""",
    "8. QUBO": """

import numpy as np

# Qiskit / Qiskit Optimization imports
from qiskit import Aer
from qiskit.utils import QuantumInstance
from qiskit.algorithms import QAOA
from qiskit.algorithms.optimizers import SPSA
from qiskit_optimization import QuadraticProgram
from qiskit_optimization.algorithms import MinimumEigenOptimizer

# 1) Define a small QUBO with two binary variables
problem = QuadraticProgram("my_qubo")
problem.binary_var("x0")
problem.binary_var("x1")

# Objective: minimize: H = x0 + 2*x1 + x0*x1
problem.minimize(
    linear={"x0": 1, "x1": 2},
    quadratic={("x0", "x1"): 1}
)

# Print to confirm the problem is not empty
print("--- Quadratic Program ---")
print(problem.export_as_lp_string())

# 2) Set up QAOA solver on the qasm_simulator
backend = Aer.get_backend('qasm_simulator')
quantum_instance = QuantumInstance(
    backend=backend,
    shots=512,
    seed_simulator=42,
    seed_transpiler=42
)

qaoa = QAOA(
    optimizer=SPSA(maxiter=50), reps=2, quantum_instance=quantum_instance
)

solver = MinimumEigenOptimizer(qaoa)

# 3) Solve the QUBO
result = solver.solve(problem)

print("--- QAOA Results ---")
print("Optimal solution:", result.x)
print("Objective value:", result.fval)


    """,
    "9. DNA Sequence Matching with Grover's Algorithm": """
from qiskit import QuantumCircuit, transpile
from qiskit_aer import AerSimulator
from qiskit.circuit.library import GroverOperator

# Define the oracle circuit to mark the solution state |01>
def create_oracle():
    oracle_circuit = QuantumCircuit(2)
    oracle_circuit.cz(0, 1)  # Mark |01> as the solution
    return oracle_circuit

# Define the full Grover search circuit
def create_grover_circuit():
    oracle = create_oracle()
    grover_circuit = QuantumCircuit(2, 2)

    # Apply Hadamard to all qubits
    grover_circuit.h([0, 1])

    # Apply the oracle
    grover_circuit.append(oracle.to_gate(), [0, 1])

    # Apply Grover diffusion operator
    grover_circuit.h([0, 1])
    grover_circuit.x([0, 1])
    grover_circuit.h(1)
    grover_circuit.cz(0, 1)
    grover_circuit.h(1)
    grover_circuit.x([0, 1])
    grover_circuit.h([0, 1])

    # Measure the qubits
    grover_circuit.measure([0, 1], [0, 1])
    return grover_circuit

# Create the Grover circuit
grover_circuit = create_grover_circuit()

# Use AerSimulator as the backend
simulator = AerSimulator()

# Transpile and execute the circuit
compiled_circuit = transpile(grover_circuit, simulator)
result = simulator.run(compiled_circuit, shots=1024).result()

# Retrieve and print the counts
counts = result.get_counts()
print(counts)
"""
}

# Selection menu for examples
selected_example = st.selectbox("Select a Quantum Circuit Example", list(examples.keys()))

# Display selected example code
st.subheader("Selected Quantum Circuit Code")
st.text_area("Code", examples[selected_example], height=300)

# Run button
if st.button("Run"):
    try:
        # Redirect stdout to capture print output
        old_stdout = sys.stdout
        redirected_output = io.StringIO()
        sys.stdout = redirected_output

        # Execute the selected example
        exec(examples[selected_example])

        # Retrieve and display output
        output = redirected_output.getvalue()
        st.success("Execution successful!")
        st.text_area("Output", output, height=200)
    except Exception as e:
        st.error(f"An error occurred: {e}")
    finally:
        # Reset stdout
        sys.stdout = old_stdout