File size: 11,594 Bytes
e94efbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import streamlit as st
import pandas as pd
import numpy as np
import random
from datetime import datetime, timedelta

# Seed for reproducibility
np.random.seed(42)

# Function to generate synthetic BreastCancer data
def generate_breast_cancer_data(num_patients):
    primary_keys = [f"PPK_{i+1:05d}" for i in range(num_patients)]
    ages = []
    menopausal_status = []
    tumor_sizes = []
    lymph_nodes = []
    grades = []
    stages = []
    er_status = []
    pr_status = []
    her2_status = []
    ki67_level = []
    tnbc_status = []
    brca_mutation = []
    overall_health = []
    genomic_score = []
    treatment = []

    for i in range(num_patients):
        age = int(np.random.normal(60, 10))
        age = max(30, min(age, 80))
        ages.append(age)

        menopausal = "Post-menopausal" if age >= 50 else "Pre-menopausal"
        menopausal_status.append(menopausal)

        tumor_size = round(np.random.lognormal(mean=0.7, sigma=0.5), 2)
        tumor_sizes.append(tumor_size)

        lymph_node = (
            "Positive"
            if (tumor_size > 2.0 and np.random.rand() < 0.6)
            or (tumor_size <= 2.0 and np.random.rand() < 0.3)
            else "Negative"
        )
        lymph_nodes.append(lymph_node)

        grade = np.random.choice([1, 2, 3], p=[0.1, 0.4, 0.5] if tumor_size > 2.0 else [0.3, 0.5, 0.2])
        grades.append(grade)

        if tumor_size <= 2.0 and lymph_node == "Negative":
            stage = "I"
        elif (tumor_size > 2.0 and tumor_size <= 5.0) and lymph_node == "Negative":
            stage = "II"
        elif lymph_node == "Positive" or tumor_size > 5.0:
            stage = "III"
        else:
            stage = "II"
        if np.random.rand() < 0.05:
            stage = "IV"
        stages.append(stage)

        er = np.random.choice(["Positive", "Negative"], p=[0.75, 0.25])
        pr = "Positive" if er == "Positive" and np.random.rand() > 0.1 else "Negative"
        er_status.append(er)
        pr_status.append(pr)

        her2 = np.random.choice(["Positive", "Negative"], p=[0.3, 0.7] if grade == 3 else [0.15, 0.85])
        her2_status.append(her2)

        ki67 = "High" if grade == 3 and np.random.rand() < 0.8 else "Low"
        ki67_level.append(ki67)

        tnbc = "Positive" if er == "Negative" and pr == "Negative" and her2 == "Negative" else "Negative"
        tnbc_status.append(tnbc)

        brca = "Positive" if (tnbc == "Positive" or age < 40) and np.random.rand() < 0.2 else "Negative"
        brca_mutation.append(brca)

        health = "Good" if age < 65 and np.random.rand() < 0.9 else "Poor"
        overall_health.append(health)

        recurrence_score = (
            np.random.choice(["Low", "Intermediate", "High"], p=[0.6, 0.3, 0.1])
            if er == "Positive" and her2 == "Negative"
            else "N/A"
        )
        genomic_score.append(recurrence_score)

        if stage in ["I", "II"]:
            if tnbc == "Positive":
                treat = "Surgery, Chemotherapy, and Radiation Therapy"
            elif er == "Positive" and recurrence_score != "N/A":
                if recurrence_score == "High":
                    treat = "Surgery, Chemotherapy, Hormone Therapy, and Radiation Therapy"
                elif recurrence_score == "Intermediate":
                    treat = "Surgery, Consider Chemotherapy, Hormone Therapy, and Radiation Therapy"
                else:
                    treat = "Surgery, Hormone Therapy, and Radiation Therapy"
            elif her2 == "Positive":
                treat = "Surgery, HER2-Targeted Therapy, Chemotherapy, and Radiation Therapy"
            else:
                treat = "Surgery, Chemotherapy, and Radiation Therapy"
        elif stage == "III":
            treat = (
                "Neoadjuvant Chemotherapy, Surgery, Radiation Therapy"
                + (", HER2-Targeted Therapy" if her2 == "Positive" else "")
                + (", Hormone Therapy" if er == "Positive" else "")
            )
        else:
            treat = "Systemic Therapy (Palliative Care)"
        treatment.append(treat)

    breast_cancer_data = {
        "PRIMARY_PERSON_KEY": primary_keys,
        "Age": ages,
        "Menopausal Status": menopausal_status,
        "Tumor Size (cm)": tumor_sizes,
        "Lymph Node Involvement": lymph_nodes,
        "Tumor Grade": grades,
        "Tumor Stage": stages,
        "ER Status": er_status,
        "PR Status": pr_status,
        "HER2 Status": her2_status,
        "Ki-67 Level": ki67_level,
        "TNBC Status": tnbc_status,
        "BRCA Mutation": brca_mutation,
        "Overall Health": overall_health,
        "Genomic Recurrence Score": genomic_score,
        "Treatment": treatment,
    }

    return pd.DataFrame(breast_cancer_data)

# Function to generate Members
def generate_members_from_breast_cancer(breast_cancer_df):
    return pd.DataFrame({
        "MEMBER_ID": breast_cancer_df["PRIMARY_PERSON_KEY"],
        "PRIMARY_PERSON_KEY": breast_cancer_df["PRIMARY_PERSON_KEY"],
        "MEM_GENDER": ["F"] * len(breast_cancer_df),
        "MEM_ETHNICITY": np.random.choice(["Hispanic", "Non-Hispanic", None], len(breast_cancer_df)),
        "MEM_RACE": np.random.choice(["White", "Black", "Asian", None], len(breast_cancer_df)),
        "MEM_STATE": np.random.choice(["MI", "HI", "CA"], len(breast_cancer_df)),
        "MEM_ZIP3": np.random.randint(100, 999, len(breast_cancer_df)),
    })

# Function to generate Enrollments
def generate_enrollments_from_breast_cancer(breast_cancer_df):
    return pd.DataFrame({
        "PRIMARY_PERSON_KEY": breast_cancer_df["PRIMARY_PERSON_KEY"],
        "MEM_STAT": np.random.choice(["ACTIVE", "INACTIVE"], len(breast_cancer_df)),
        "PAYER_LOB": np.random.choice(["MEDICAID", "COMMERCIAL", "MEDICARE"], len(breast_cancer_df)),
        "PAYER_TYPE": np.random.choice(["PPO", "HMO"], len(breast_cancer_df)),
        "RELATION": np.random.choice(["SUBSCRIBER", "DEPENDENT"], len(breast_cancer_df)),
    })

# Function to generate Services
def generate_services(num_services, primary_keys):
    return pd.DataFrame({
        "PRIMARY_PERSON_KEY": np.random.choice(primary_keys, num_services),
        "SERVICE_SETTING": np.random.choice(["OUTPATIENT", "INPATIENT"], num_services),
        "PROC_CODE": np.random.randint(1000, 9999, num_services),
        "SERVICE_DATE": pd.date_range(start="2023-01-01", periods=num_services).to_numpy(),
        "AMOUNT_BILLED": np.random.uniform(500, 15000, num_services),
        "AMOUNT_PAID": np.random.uniform(500, 15000, num_services),
        "CLAIM_STATUS": np.random.choice(["PAID", "DENIED", "PENDING"], num_services),
        "RELATION": np.random.choice(["SUBSCRIBER", "DEPENDENT"], num_services),
    })

# Function to generate Providers
def generate_providers(num_providers):
    return pd.DataFrame({
        "PROVIDER_ID": [f"PROV_{i+1:05d}" for i in range(num_providers)],
        "PROV_NAME": np.random.choice(["Clinic A", "Clinic B", "Clinic C"], num_providers),
        "PROV_STATE": np.random.choice(["MI", "HI", "CA"], num_providers),
        "PROV_ZIP": np.random.randint(10000, 99999, num_providers),
        "PROV_SPECIALTY": np.random.choice(["Oncology", "Radiology", "Surgery"], num_providers),
        "PROV_TAXONOMY": np.random.choice(["208100000X", "207RE0101X"], num_providers),
    })

# Function to generate Wearable Data
def generate_wearable_data(num_patients, num_measurements, start_datetime, time_interval, cancer_rate, chemo_brain_effect, primary_keys):
    num_cancer_patients = int((cancer_rate / 100) * num_patients)
    cancer_patients = set(random.sample(primary_keys, num_cancer_patients))
    baseline_activity = 2000
    baseline_heart_rate = 80
    baseline_o2 = 98.2
    activity_reduction_factor = (100 - chemo_brain_effect) / 100.0
    chemo_heart_rate_increase = 5

    data_rows = []
    timestamps = [start_datetime + i * time_interval for i in range(num_measurements)]

    for pkey in primary_keys:
        is_cancer = pkey in cancer_patients
        for ts in timestamps:
            activity_var = random.randint(-300, 300)
            hr_var = random.randint(-3, 3)
            o2_var = random.uniform(-0.3, 0.3)

            if is_cancer:
                activity = int((baseline_activity + activity_var) * activity_reduction_factor)
                heart_rate = baseline_heart_rate + hr_var + chemo_heart_rate_increase
            else:
                activity = baseline_activity + activity_var
                heart_rate = baseline_heart_rate + hr_var

            o2_sat = baseline_o2 + o2_var

            activity = max(activity, 0)
            heart_rate = max(heart_rate, 50)
            o2_sat = max(o2_sat, 90.0)

            data_rows.append([
                pkey,
                ts.strftime("%Y-%m-%d %H:%M:%S"),
                activity,
                heart_rate,
                round(o2_sat, 1)
            ])
    
    return pd.DataFrame(data_rows, columns=["PRIMARY_PERSON_KEY", "Measurement_Timestamp", "Activity_Level", "Heart_Rate", "O2_Saturation"])

# Main Streamlit App
st.title("Lokahi Synthetic Medical Data Generator ")

# Sliders
num_patients = st.slider("Number of Breast Cancer Patients to Generate", 10, 1000, 100)
num_measurements = st.slider("Measurements per Patient (Wearable Data)", 1, 100, 10)
num_services = st.slider("Number of Services to Generate", 10, 2000, 500)
num_providers = st.slider("Number of Providers to Generate", 10, 500, 100)

start_date = st.date_input("Wearable Data Start Date", value=datetime(2024, 12, 1))
start_time = st.time_input("Wearable Data Start Time", value=datetime(2024, 12, 1, 8, 0).time())
cancer_rate = st.slider("Percentage of Patients with Cancer (Wearable Data)", 0, 100, 30)
chemo_brain_effect = st.slider("Chemo Brain Impact on Activity Level (in % reduction)", 0, 50, 20)

if st.button("Generate Data"):
    primary_keys = [f"PPK_{i+1:05d}" for i in range(num_patients)]
    wearable_start_datetime = datetime.combine(start_date, start_time)
    breast_cancer_df = generate_breast_cancer_data(num_patients)
    members_df = generate_members_from_breast_cancer(breast_cancer_df)
    enrollments_df = generate_enrollments_from_breast_cancer(breast_cancer_df)
    services_df = generate_services(num_services, primary_keys)
    providers_df = generate_providers(num_providers)
    wearable_data = generate_wearable_data(
        num_patients, num_measurements, wearable_start_datetime, timedelta(hours=1), cancer_rate, chemo_brain_effect, primary_keys
    )

    st.subheader("Breast Cancer Data")
    st.dataframe(breast_cancer_df.head())
    st.download_button("Download Breast Cancer Data", breast_cancer_df.to_csv(index=False), "breast_cancer.csv")

    st.subheader("Members Data")
    st.dataframe(members_df.head())
    st.download_button("Download Members Data", members_df.to_csv(index=False), "members.csv")

    st.subheader("Enrollments Data")
    st.dataframe(enrollments_df.head())
    st.download_button("Download Enrollments Data", enrollments_df.to_csv(index=False), "enrollments.csv")

    st.subheader("Services Data")
    st.dataframe(services_df.head())
    st.download_button("Download Services Data", services_df.to_csv(index=False), "services.csv")

    st.subheader("Providers Data")
    st.dataframe(providers_df.head())
    st.download_button("Download Providers Data", providers_df.to_csv(index=False), "providers.csv")

    st.subheader("Wearable Data")
    st.dataframe(wearable_data.head())
    st.download_button("Download Wearable Data", wearable_data.to_csv(index=False), "wearable_data.csv")