File size: 13,125 Bytes
65d25e0 27c456d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Comprehensive Exam Data Analysis with Pandas - 30 Industry Goals with Connections</title>
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/7.8.5/d3.min.js"></script>
<style>
body { font-family: Arial, sans-serif; margin: 20px; }
#goalSpace { border: 1px solid #ccc; }
.goal { cursor: pointer; }
#info { margin-top: 20px; font-weight: bold; }
#selectedGoal { margin-top: 10px; padding: 10px; border: 1px solid #ccc; background-color: #f0f0f0; }
#hoverInfo {
position: absolute;
padding: 10px;
background-color: rgba(255, 255, 255, 0.9);
border: 1px solid #ccc;
border-radius: 5px;
font-size: 14px;
max-width: 300px;
display: none;
}
</style>
</head>
<body>
<h1>Comprehensive Exam Data Analysis with Pandas - 30 Industry Goals with Connections</h1>
<div id="goalSpace"></div>
<div id="info"></div>
<div id="selectedGoal"></div>
<div id="hoverInfo"></div>
<script>
const width = 1200;
const height = 800;
const goals = [
{ id: 1, x: 100, y: 400, name: "Automate Data Import", description: "Develop scripts to automate exam data extraction from various sources (CSV, Excel, databases) using Pandas read_* functions." },
{ id: 2, x: 200, y: 300, name: "Data Cleaning", description: "Implement robust data cleaning processes to handle missing values, outliers, and inconsistencies in exam data using Pandas methods like dropna(), fillna(), and apply()." },
{ id: 3, x: 300, y: 200, name: "Data Transformation", description: "Utilize Pandas for complex data transformations such as pivoting exam results, melting question-wise scores, and creating derived features for analysis." },
{ id: 4, x: 400, y: 300, name: "Statistical Analysis", description: "Develop functions to automate statistical analysis of exam results, including descriptive statistics, hypothesis testing, and correlation analysis using Pandas and SciPy." },
{ id: 5, x: 500, y: 400, name: "Performance Metrics", description: "Create custom functions to calculate industry-standard exam performance metrics like item difficulty, discrimination index, and reliability coefficients using Pandas operations." },
{ id: 6, x: 200, y: 500, name: "Data Filtering", description: "Implement advanced filtering techniques to segment exam data based on various criteria (e.g., demographic info, score ranges) using boolean indexing and query() method in Pandas." },
{ id: 7, x: 300, y: 600, name: "Reporting Automation", description: "Develop automated reporting systems that use Pandas groupby() and agg() functions to generate summary statistics and performance reports for different exam cohorts." },
{ id: 8, x: 400, y: 500, name: "Data Visualization", description: "Create interactive dashboards for exam data visualization using Pandas with Plotly or Bokeh, allowing stakeholders to explore results dynamically." },
{ id: 9, x: 500, y: 600, name: "Time Series Analysis", description: "Implement time series analysis techniques using Pandas datetime functionality to track and forecast exam performance trends over multiple test administrations." },
{ id: 10, x: 300, y: 400, name: "Data Integration", description: "Develop processes to merge exam data with other relevant datasets (e.g., student information systems, learning management systems) using Pandas merge() and join() operations." },
{ id: 11, x: 600, y: 300, name: "Performance Optimization", description: "Improve the efficiency of Pandas operations on large exam datasets by utilizing techniques like chunking, multiprocessing, and query optimization." },
{ id: 12, x: 700, y: 400, name: "Machine Learning Integration", description: "Integrate machine learning models with Pandas for predictive analytics, such as predicting exam success or identifying at-risk students based on historical data." },
{ id: 13, x: 800, y: 500, name: "Custom Indexing", description: "Implement custom indexing strategies in Pandas to efficiently handle hierarchical exam data structures and improve data access patterns." },
{ id: 14, x: 900, y: 400, name: "Data Anonymization", description: "Develop Pandas-based workflows to anonymize sensitive exam data, ensuring compliance with privacy regulations while maintaining data utility for analysis." },
{ id: 15, x: 1000, y: 300, name: "Exam Item Analysis", description: "Create specialized functions using Pandas to perform detailed item analysis, including distractor analysis and reliability calculations for individual exam questions." },
{ id: 16, x: 600, y: 500, name: "Longitudinal Analysis", description: "Implement Pandas-based methods for tracking student performance across multiple exams over time, identifying learning trends and progress patterns." },
{ id: 17, x: 700, y: 600, name: "Adaptive Testing Analysis", description: "Develop analysis pipelines using Pandas to evaluate and optimize adaptive testing algorithms, including item selection strategies and scoring methods." },
{ id: 18, x: 800, y: 700, name: "Exam Equating", description: "Create Pandas workflows to perform exam equating, ensuring comparability of scores across different versions or administrations of an exam." },
{ id: 19, x: 900, y: 600, name: "Response Time Analysis", description: "Utilize Pandas to analyze exam response times, identifying patterns that may indicate guessing, test-taking strategies, or item difficulty." },
{ id: 20, x: 1000, y: 500, name: "Collaborative Filtering", description: "Implement collaborative filtering techniques using Pandas to recommend study materials or practice questions based on exam performance patterns." },
{ id: 21, x: 400, y: 700, name: "Exam Fraud Detection", description: "Develop anomaly detection algorithms using Pandas to identify potential exam fraud or unusual response patterns in large-scale testing programs." },
{ id: 22, x: 500, y: 800, name: "Standard Setting", description: "Create Pandas-based tools to assist in standard setting processes, analyzing expert judgments and examinee data to establish performance standards." },
{ id: 23, x: 600, y: 700, name: "Automated Reporting", description: "Implement automated report generation using Pandas and libraries like Jinja2 to create customized, data-driven exam reports for various stakeholders." },
{ id: 24, x: 700, y: 800, name: "Cross-validation", description: "Develop cross-validation frameworks using Pandas to assess the reliability and generalizability of predictive models in educational assessment contexts." },
{ id: 25, x: 800, y: 300, name: "API Integration", description: "Create Pandas-based interfaces to integrate exam data analysis workflows with external APIs, facilitating real-time data exchange and reporting." },
{ id: 26, x: 900, y: 200, name: "Natural Language Processing", description: "Implement NLP techniques using Pandas and libraries like NLTK to analyze free-text responses in exams, enabling automated scoring and content analysis." },
{ id: 27, x: 1000, y: 100, name: "Exam Blueprint Analysis", description: "Develop Pandas workflows to analyze exam blueprints, ensuring content coverage and alignment with learning objectives across multiple test forms." },
{ id: 28, x: 100, y: 600, name: "Differential Item Functioning", description: "Implement statistical methods using Pandas to detect and analyze differential item functioning (DIF) in exams, ensuring fairness across different demographic groups." },
{ id: 29, x: 200, y: 700, name: "Automated Feedback Generation", description: "Create Pandas-based systems to generate personalized feedback for test-takers based on their exam performance and identified areas for improvement." },
{ id: 30, x: 300, y: 800, name: "Exam Security Analysis", description: "Develop analytical tools using Pandas to assess and enhance exam security, including analysis of item exposure rates and detection of potential security breaches." }
];
const connections = [
{ source: 1, target: 2 },
{ source: 2, target: 3 },
{ source: 3, target: 4 },
{ source: 4, target: 5 },
{ source: 5, target: 7 },
{ source: 6, target: 7 },
{ source: 7, target: 8 },
{ source: 8, target: 9 },
{ source: 9, target: 16 },
{ source: 10, target: 13 },
{ source: 11, target: 12 },
{ source: 12, target: 20 },
{ source: 13, target: 16 },
{ source: 14, target: 21 },
{ source: 15, target: 17 },
{ source: 16, target: 18 },
{ source: 17, target: 19 },
{ source: 18, target: 22 },
{ source: 19, target: 21 },
{ source: 20, target: 29 },
{ source: 21, target: 30 },
{ source: 22, target: 23 },
{ source: 23, target: 25 },
{ source: 24, target: 12 },
{ source: 25, target: 23 },
{ source: 26, target: 15 },
{ source: 27, target: 15 },
{ source: 28, target: 22 },
{ source: 29, target: 23 },
{ source: 30, target: 21 },
// Additional connections for more interconnectivity
{ source: 1, target: 10 },
{ source: 2, target: 6 },
{ source: 3, target: 13 },
{ source: 4, target: 15 },
{ source: 5, target: 28 },
{ source: 8, target: 23 },
{ source: 11, target: 25 },
{ source: 14, target: 30 },
{ source: 24, target: 17 },
{ source: 26, target: 29 }
];
const svg = d3.select("#goalSpace")
.append("svg")
.attr("width", width)
.attr("height", height);
const links = svg.selectAll("line")
.data(connections)
.enter()
.append("line")
.attr("x1", d => goals.find(g => g.id === d.source).x)
.attr("y1", d => goals.find(g => g.id === d.source).y)
.attr("x2", d => goals.find(g => g.id === d.target).x)
.attr("y2", d => goals.find(g => g.id === d.target).y)
.attr("stroke", "#999")
.attr("stroke-width", 1)
.attr("stroke-opacity", 0.6);
const goalNodes = svg.selectAll("circle")
.data(goals)
.enter()
.append("circle")
.attr("cx", d => d.x)
.attr("cy", d => d.y)
.attr("r", 10)
.attr("fill", d => {
if (d.id <= 10) return "blue";
if (d.id <= 20) return "green";
return "orange";
})
.attr("class", "goal");
const goalLabels = svg.selectAll("text")
.data(goals)
.enter()
.append("text")
.attr("x", d => d.x + 15)
.attr("y", d => d.y)
.text(d => d.name)
.attr("font-size", "12px");
const hoverInfo = d3.select("#hoverInfo");
goalNodes.on("mouseover", function(event, d) {
d3.select(this).attr("r", 15);
hoverInfo.style("display", "block")
.style("left", (event.pageX + 10) + "px")
.style("top", (event.pageY - 10) + "px")
.html(`<strong>${d.name}</strong><br>${d.description}`);
}).on("mouseout", function() {
d3.select(this).attr("r", 10);
hoverInfo.style("display", "none");
});
goalNodes.on("click", function(event, d) {
updateSelectedGoalInfo(d);
});
function updateSelectedGoalInfo(goal) {
const selectedGoalDiv = d3.select("#selectedGoal");
selectedGoalDiv.html(`
<h3>${goal.name}</h3>
<p>${goal.description}</p>
`);
}
svg.on("mousemove", function(event) {
const [x, y] = d3.pointer(event);
const closest = findClosestGoal(x, y);
highlightClosestGoal(closest);
});
function findClosestGoal(x, y) {
return goals.reduce((closest, goal) => {
const distance = Math.sqrt(Math.pow(goal.x - x, 2) + Math.pow(goal.y - y, 2));
return distance < closest.distance ? { goal, distance } : closest;
}, { goal: null, distance: Infinity }).goal;
}
function highlightClosestGoal(goal) {
d3.select("#info").html(`Closest goal: ${goal.name}`);
}
</script>
</body>
</html>
|