File size: 13,704 Bytes
68361fe
2672a77
68361fe
 
 
d4a54d8
7e94170
 
2254e31
68361fe
9531975
 
 
68361fe
9531975
 
 
 
 
 
 
 
 
68361fe
 
 
 
d636118
7e94170
9531975
7e94170
 
 
9531975
68361fe
 
 
 
 
 
9531975
7e94170
 
 
68361fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2254e31
 
 
 
 
 
 
 
7e94170
 
2254e31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e94170
2254e31
7e94170
 
 
 
2254e31
 
7e94170
 
 
 
2254e31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e94170
 
2254e31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e94170
2254e31
7e94170
 
 
2254e31
 
 
 
 
 
 
 
a1219fd
2254e31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68361fe
 
 
 
2dad25f
 
 
 
7e94170
 
2dad25f
 
68361fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e94170
68361fe
7e94170
 
 
 
68361fe
 
7e94170
 
 
 
68361fe
7e94170
 
 
 
 
 
68361fe
7e94170
68361fe
 
 
 
 
 
 
 
 
 
 
 
 
 
2dad25f
68361fe
 
2dad25f
 
 
 
 
 
7e94170
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# app.py
from datetime import datetime
import streamlit as st
import plotly.graph_objects as go
import pandas as pd
from utils.helper import *


# english
def main_algo_trader():
    # Front-end Design
    st.set_page_config(layout="wide")
    st.write("# Welcome to Algorithmic Trading! A Quick Implementation👋")

    with st.sidebar:
        with st.expander("Expand/Collapse"):
            st.markdown(
                r"""
                The following app is a simple demonstration of the growth stock strategy. For simplicity, we assume our research team hand over a pool of stocks. Amongst the pool of stocks, we can do the following:
                - use `yfinance` library to download stock data live (for the sake of speed, please start with time frame "1mo");
                - every period (time frame is a tuning parameter), we balance our portfolio (equal weight) by holding the top n stocks (n can be top quintile/quartile of stocks);
                """
            )

    # Main inputs
    tickers = st.text_input(
        "Enter tickers (comma-separated):",
        "MSFT, AAPL, NVDA, GOOG, AMZN, META, LLY, AVGO, TSLA, JPM, V, WMT, UNH, MA, PG, HD, JNJ, ORCL, MRK, COST, ABBV, BAC, CRM, AMD, NFLX, ACN, ADBE, DIS, TMO, WFC, MCD, CSCO, ABT, QCOM, INTC, INTU, IBM, AMAT, CMCSA, AXP, PFE, NOW, AMGN, MU",
    )
    start_date = st.sidebar.date_input("Start date", pd.to_datetime("2001-01-01"))
    end_date = st.sidebar.date_input(
        "End date", pd.to_datetime(datetime.now().strftime("%Y-%m-%d"))
    )
    time_frame = st.sidebar.selectbox(
        "Select Time Frame:",
        [
            "1mo",
            "3mo",
        ],
    )
    top_n = st.sidebar.number_input("Top n stocks", min_value=1, value=3)
    height_of_graph = st.sidebar.number_input(
        "Height of the plot", min_value=500, value=750
    )

    # Process inputs
    tickers_list = [ticker.strip() for ticker in tickers.split(",")]

    # Run analysis on button click
    if st.button("Run Analysis"):
        with st.spinner("Downloading data and calculating returns..."):
            stock_data = download_stock_data(
                tickers_list,
                start_date.strftime("%Y-%m-%d"),
                end_date.strftime("%Y-%m-%d"),
                w=time_frame,
            )
            returns_data = create_portfolio_and_calculate_returns(stock_data, top_n)
            benchmark_sharpe_ratio = (
                returns_data["benchmark"].mean() / returns_data["benchmark"].std()
            )
            portfolio_sharpe_ratio = (
                returns_data["portfolio_returns"].mean()
                / returns_data["portfolio_returns"].std()
            )

            # Data for plotting
            df = returns_data[
                ["rolling_benchmark", "rolling_portfolio_returns", "portfolio_history"]
            ]
            df.index = pd.to_datetime(df.index, unit="ms")

            # Create download file
            @st.cache_data
            def convert_df(df):
                # IMPORTANT: Cache the conversion to prevent computation on every rerun
                return df.to_csv().encode("utf-8")

            csv = convert_df(df)

            # Create plot
            fig = go.Figure()
            fig.add_trace(
                go.Scatter(
                    x=df.index,
                    y=df["rolling_benchmark"],
                    mode="lines",
                    name="Rolling Benchmark",
                )
            )
            fig.add_trace(
                go.Scatter(
                    x=df.index,
                    y=df["rolling_portfolio_returns"],
                    mode="lines",
                    name="Rolling Portfolio Returns",
                )
            )

            for date, stocks in df["portfolio_history"].items():
                fig.add_shape(
                    type="line",
                    x0=date,
                    y0=0,
                    x1=date,
                    y1=0,
                    line=dict(color="RoyalBlue", width=1),
                )
                fig.add_annotation(
                    x=date,
                    y=0.5,
                    text=str(stocks),
                    showarrow=False,
                    yshift=10,
                    textangle=-90,
                    font=dict(size=15),  # You can adjust the size as needed
                )

            # Calculate means and standard deviations
            benchmark_mean = returns_data["benchmark"].mean()
            benchmark_std = returns_data["benchmark"].std()
            portfolio_mean = returns_data["portfolio_returns"].mean()
            portfolio_std = returns_data["portfolio_returns"].std()

            # Update title text with additional information
            if time_frame == "1mo":
                some_n_based_on_time_frame = 12
                in_a_year = 1000 * (1 + portfolio_mean) ** (some_n_based_on_time_frame)
                in_50_years = 1000 * (1 + portfolio_mean) ** (
                    some_n_based_on_time_frame * 50
                )
            else:
                some_n_based_on_time_frame = 4
                in_a_year = 1000 * (1 + portfolio_mean) ** (some_n_based_on_time_frame)
                in_50_years = 1000 * (1 + portfolio_mean) ** (
                    some_n_based_on_time_frame * 50
                )
            title_text = (
                f"Performance:<br>"
                f"Benchmark Sharpe Ratio = {benchmark_sharpe_ratio:.3f}, "
                f"Portfolio Sharpe Ratio = {portfolio_sharpe_ratio:.3f}, "
                f"based on time frame: {time_frame}<br>"
                f"Benchmark => Mean: {benchmark_mean:.4f}, Std: {benchmark_std:.4f}; "
                f"Portfolio => Mean: {portfolio_mean:.4f}, Std: {portfolio_std:.4f}<br>"
                f"---<br>"
                f"This may or may not be a small number, let's check: <br>"
                f"$1,000*(1+{portfolio_mean:.4f})^({some_n_based_on_time_frame})={in_a_year}, <br>"
                f"$1,000*(1+{portfolio_mean:.4f})^({some_n_based_on_time_frame}*50)={in_50_years}."
            )
            curr_max_num = max(
                df.rolling_benchmark.max(), df.rolling_portfolio_returns.max()
            )
            fig.update_layout(
                title=title_text,
                xaxis_title="Date",
                yaxis_title="Value",
                yaxis=dict(range=[0, curr_max_num * 1.1]),
                legend=dict(
                    orientation="h", x=0.5, y=-0.4, xanchor="center", yanchor="bottom"
                ),
                height=height_of_graph,
            )

            st.plotly_chart(fig, use_container_width=True)

            # Download
            st.download_button(
                label="Download data as CSV",
                data=csv,
                file_name=f"history_{end_date}.csv",
                mime="text/csv",
            )


# chinese
def main_algo_trader_chinese():
    # Front-end Design
    st.set_page_config(layout="wide")
    st.write("# 欢迎来到算法交易!一个快速模拟平台👋")

    with st.sidebar:
        with st.expander("Expand/Collapse"):
            st.markdown(
                r"""
                以下应用程序是成长股策略的简单演示。为简单起见,我们假设我们的研究团队交给了一些股票。在这些股票池中,我们可以做到以下几点:
                - 使用 `yfinance` 库实时下载股票数据(为了速度,请从时间框架 "1mo" 开始);
                - 每个周期(时间框架是一个调整参数),我们通过持有前 n 只股票(n 可以是股票的前五分之一/四分之一)来平衡我们的投资组合(等权)。
                """
            )

    # Main inputs
    tickers = st.text_input(
        "使用英文键入输入股票代码(以逗号分隔):",
        "MSFT, AAPL, NVDA, GOOG, AMZN, META, LLY, AVGO, TSLA, JPM, V, WMT, UNH, MA, PG, HD, JNJ, ORCL, MRK, COST, ABBV, BAC, CRM, AMD, NFLX, ACN, ADBE, DIS, TMO, WFC, MCD, CSCO, ABT, QCOM, INTC, INTU, IBM, AMAT, CMCSA, AXP, PFE, NOW, AMGN, MU",
    )
    start_date = st.sidebar.date_input("开始日期", pd.to_datetime("2001-01-01"))
    end_date = st.sidebar.date_input(
        "结束日期", pd.to_datetime(datetime.now().strftime("%Y-%m-%d"))
    )
    time_frame = st.sidebar.selectbox(
        "选择时间框架:",
        [
            "1mo",
            "3mo",
        ],
    )
    top_n = st.sidebar.number_input("选择前 n 支股票", min_value=1, value=3)
    height_of_graph = st.sidebar.number_input("图像高度", min_value=500, value=750)

    # Process inputs
    tickers_list = [ticker.strip() for ticker in tickers.split(",")]

    # Run analysis on button click
    if st.button("运行分析"):
        with st.spinner("下载数据并计算回报..."):
            stock_data = download_stock_data(
                tickers_list,
                start_date.strftime("%Y-%m-%d"),
                end_date.strftime("%Y-%m-%d"),
                w=time_frame,
            )
            returns_data = create_portfolio_and_calculate_returns(stock_data, top_n)
            benchmark_sharpe_ratio = (
                returns_data["benchmark"].mean() / returns_data["benchmark"].std()
            )
            portfolio_sharpe_ratio = (
                returns_data["portfolio_returns"].mean()
                / returns_data["portfolio_returns"].std()
            )

            # Data for plotting
            df = returns_data[
                ["rolling_benchmark", "rolling_portfolio_returns", "portfolio_history"]
            ]
            df.index = pd.to_datetime(df.index, unit="ms")

            # Create download file
            @st.cache_data
            def convert_df(df):
                # IMPORTANT: Cache the conversion to prevent computation on every rerun
                return df.to_csv().encode("utf-8")

            csv = convert_df(df)

            # Create plot
            fig = go.Figure()
            fig.add_trace(
                go.Scatter(
                    x=df.index,
                    y=df["rolling_benchmark"],
                    mode="lines",
                    name="Rolling Benchmark",
                )
            )
            fig.add_trace(
                go.Scatter(
                    x=df.index,
                    y=df["rolling_portfolio_returns"],
                    mode="lines",
                    name="Rolling Portfolio Returns",
                )
            )

            for date, stocks in df["portfolio_history"].items():
                fig.add_shape(
                    type="line",
                    x0=date,
                    y0=0,
                    x1=date,
                    y1=0,
                    line=dict(color="RoyalBlue", width=1),
                )
                fig.add_annotation(
                    x=date,
                    y=0.5,
                    text=str(stocks),
                    showarrow=False,
                    yshift=10,
                    textangle=-90,
                    font=dict(size=15),  # You can adjust the size as needed
                )

            # Calculate means and standard deviations
            benchmark_mean = returns_data["benchmark"].mean()
            benchmark_std = returns_data["benchmark"].std()
            portfolio_mean = returns_data["portfolio_returns"].mean()
            portfolio_std = returns_data["portfolio_returns"].std()

            # Update title text with additional information
            if time_frame == "1mo":
                some_n_based_on_time_frame = 12
                in_a_year = 1000 * (1 + portfolio_mean) ** (some_n_based_on_time_frame)
                in_50_years = 1000 * (1 + portfolio_mean) ** (
                    some_n_based_on_time_frame * 50
                )
            else:
                some_n_based_on_time_frame = 4
                in_a_year = 1000 * (1 + portfolio_mean) ** (some_n_based_on_time_frame)
                in_50_years = 1000 * (1 + portfolio_mean) ** (
                    some_n_based_on_time_frame * 50
                )
            title_text = (
                f"业绩:<br>"
                f"标杆回报风险比 = {benchmark_sharpe_ratio:.3f}, "
                f"投资组合回报风险比 = {portfolio_sharpe_ratio:.3f}, "
                f"交易窗口: {time_frame}<br>"
                f"标杆 => Mean: {benchmark_mean:.4f}, Std: {benchmark_std:.4f}; "
                f"投资组合 => Mean: {portfolio_mean:.4f}, Std: {portfolio_std:.4f}<br>"
                f"---<br>"
                f"这个数字如何理解,我们以1000块钱计算以下: <br>"
                f"$1,000*(1+{portfolio_mean:.4f})^({some_n_based_on_time_frame})={in_a_year}, <br>"
                f"$1,000*(1+{portfolio_mean:.4f})^({some_n_based_on_time_frame}*50)={in_50_years}."
            )
            curr_max_num = max(
                df.rolling_benchmark.max(), df.rolling_portfolio_returns.max()
            )
            fig.update_layout(
                title=title_text,
                xaxis_title="Date",
                yaxis_title="Value",
                yaxis=dict(range=[0, curr_max_num * 1.1]),
                legend=dict(
                    orientation="h", x=0.5, y=-0.4, xanchor="center", yanchor="bottom"
                ),
                height=height_of_graph,
            )

            st.plotly_chart(fig, use_container_width=True)

            # Download
            st.download_button(
                label="Download data as CSV",
                data=csv,
                file_name=f"history_{end_date}.csv",
                mime="text/csv",
            )