|
import os |
|
from threading import Thread |
|
from typing import Iterator |
|
|
|
import gradio as gr |
|
import spaces |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
|
|
|
MAX_MAX_NEW_TOKENS = 1024 |
|
DEFAULT_MAX_NEW_TOKENS = 256 |
|
MAX_INPUT_TOKEN_LENGTH = 512 |
|
|
|
DESCRIPTION = """\ |
|
# OpenELM-270M-Instruct -- Running on CPU |
|
|
|
This Space demonstrates [apple/OpenELM-270M-Instruct](https://huggingface.co/apple/OpenELM-270M-Instruct) by Apple. Please, check the original model card for details. |
|
|
|
For detail on the OpenELM model refer to the Paper page [here](https://huggingface.co/papers/2404.14619) |
|
|
|
For detail on the pre-training, instruct tuning, and parameter-efficient finetuning process refer to the [OpenELM page in the CoreNet GitHub repository](https://github.com/apple/corenet/tree/main/projects/openelm) |
|
""" |
|
|
|
LICENSE = """ |
|
<p/> |
|
|
|
--- |
|
As a derivative work of [apple/OpenELM-270M-Instruct](https://huggingface.co/apple/OpenELM-270M-Instruct) by Apple, |
|
this demo is governed by the original [license](https://huggingface.co/apple/OpenELM-270M-Instruct/blob/main/LICENSE). |
|
--- |
|
based on the [Norod78/OpenELM_3B_Demo](https://huggingface.co/spaces/Norod78/OpenELM_3B_Demo) space - I encourage you to like his space as well. I have a lot of respect for how he promoted and shared information about this unique model. |
|
""" |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"apple/OpenELM-270M-Instruct", |
|
trust_remote_code=True, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
"NousResearch/Llama-2-7b-hf", |
|
trust_remote_code=True, |
|
tokenizer_class=LlamaTokenizer, |
|
) |
|
|
|
if tokenizer.pad_token == None: |
|
tokenizer.pad_token = tokenizer.eos_token |
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
model.config.pad_token_id = tokenizer.eos_token_id |
|
|
|
def generate( |
|
message: str, |
|
chat_history: list[tuple[str, str]], |
|
max_new_tokens: int = 1024, |
|
temperature: float = 0.1, |
|
top_p: float = 0.9, |
|
top_k: int = 50, |
|
repetition_penalty: float = 1.4, |
|
) -> Iterator[str]: |
|
|
|
historical_text = "" |
|
|
|
for user, assistant in chat_history: |
|
historical_text += f"\n{user}\n{assistant}" |
|
|
|
if len(historical_text) > 0: |
|
message = historical_text + f"\n{message}" |
|
input_ids = tokenizer([message], return_tensors="pt").input_ids |
|
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: |
|
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] |
|
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") |
|
input_ids = input_ids.to(model.device) |
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) |
|
generate_kwargs = dict( |
|
{"input_ids": input_ids}, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
top_p=top_p, |
|
top_k=top_k, |
|
temperature=temperature, |
|
num_beams=1, |
|
pad_token_id = tokenizer.eos_token_id, |
|
repetition_penalty=repetition_penalty, |
|
no_repeat_ngram_size=5, |
|
early_stopping=False, |
|
) |
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
outputs = [] |
|
for text in streamer: |
|
outputs.append(text) |
|
yield "".join(outputs) |
|
|
|
|
|
chat_interface = gr.ChatInterface( |
|
fn=generate, |
|
additional_inputs=[ |
|
gr.Slider( |
|
label="Max new tokens", |
|
minimum=1, |
|
maximum=MAX_MAX_NEW_TOKENS, |
|
step=1, |
|
value=DEFAULT_MAX_NEW_TOKENS, |
|
), |
|
gr.Slider( |
|
label="Temperature", |
|
minimum=0.1, |
|
maximum=4.0, |
|
step=0.1, |
|
value=0.6, |
|
), |
|
gr.Slider( |
|
label="Top-p (nucleus sampling)", |
|
minimum=0.05, |
|
maximum=1.0, |
|
step=0.05, |
|
value=0.9, |
|
), |
|
gr.Slider( |
|
label="Top-k", |
|
minimum=1, |
|
maximum=1000, |
|
step=1, |
|
value=50, |
|
), |
|
gr.Slider( |
|
label="Repetition penalty", |
|
minimum=1.0, |
|
maximum=2.0, |
|
step=0.05, |
|
value=1.4, |
|
), |
|
], |
|
stop_btn=None, |
|
examples=[ |
|
["Tell me a joke about a sandwich:"], |
|
["What would a polite pirate say?"], |
|
["Explain quantum physics in 5 words or less:"], |
|
["Question: Why don't scientists trust atoms?\nAnswer:"], |
|
["Question: What do you call a bear with no teeth?\nAnswer:"], |
|
], |
|
) |
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
gr.Markdown(DESCRIPTION) |
|
chat_interface.render() |
|
gr.Markdown(LICENSE) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch() |
|
|