Spaces:
Paused
Paused
File size: 2,389 Bytes
ad6330a 1efd233 ad6330a 27bcfa0 c1fc3a9 ad6330a 1efd233 ad6330a dce3abc ad6330a 1efd233 c1fc3a9 4b29566 ad6330a 4b29566 a6d3ba4 4b29566 a6d3ba4 4b29566 c1fc3a9 ad6330a c1fc3a9 ad6330a c1fc3a9 4b29566 c1fc3a9 4b29566 0d18b6e c1fc3a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import os
import gradio as gr
from utils import get_model_summary, install_flash_attn, authenticate_hf
# Install required package
install_flash_attn()
# Authenticate with Hugging Face
HF_TOKEN = os.getenv("HF_TOKEN")
authenticate_hf(HF_TOKEN)
# Create the Gradio Blocks interface
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
textbox = gr.Textbox(label="Model Name", placeholder="Enter the model name here OR select example below...", lines=1)
gr.Markdown("### Vision Models")
vision_examples = gr.Examples(
examples=[
["google/paligemma-3b-mix-224"],
["google/paligemma-3b-ft-refcoco-seg-224"],
["llava-hf/llava-v1.6-mistral-7b-hf"],
["xtuner/llava-phi-3-mini-hf"],
["xtuner/llava-llama-3-8b-v1_1-transformers"],
["vikhyatk/moondream2"],
["openbmb/MiniCPM-Llama3-V-2_5"],
["microsoft/Phi-3-vision-128k-instruct"],
["HuggingFaceM4/idefics2-8b-chatty"],
["microsoft/llava-med-v1.5-mistral-7b"]
],
inputs=textbox
)
gr.Markdown("### Other Models")
other_examples = gr.Examples(
examples=[
["dwb2023/mistral-7b-instruct-quantized"],
["mistralai/Mistral-7B-Instruct-v0.2"],
["mistralai/Mistral-7B-Instruct-v0.3"],
["google/gemma-7b"],
["microsoft/Phi-3-mini-4k-instruct"],
["meta-llama/Meta-Llama-3-8B"]
],
inputs=textbox
)
submit_button = gr.Button("Submit")
with gr.Column():
output = gr.Textbox(label="Model Architecture", lines=20, placeholder="Model architecture will appear here...", show_copy_button=True)
error_output = gr.Textbox(label="Error", lines=10, placeholder="Exceptions will appear here...", show_copy_button=True)
def handle_click(model_name):
model_summary, error_message = get_model_summary(model_name)
return model_summary, error_message
submit_button.click(fn=handle_click, inputs=textbox, outputs=[output, error_output])
# Launch the interface
demo.launch()
|