Spaces:
Paused
Paused
File size: 975 Bytes
1efd233 cd39699 86fbb40 ba50ca9 68f9e87 1e1efc2 1efd233 2ccc88d b50be2b 2ccc88d c26a148 6bf2756 86fbb40 68f9e87 86fbb40 6bf2756 1efd233 86fbb40 48ed837 0d18b6e 48ed837 0d18b6e 3e06d1d 0d18b6e 6bf2756 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import gradio as gr
import os
import torch
import spaces
from transformers import AutoModelForCausalLM
from huggingface_hub import login
hf_token = os.getenv("HF_TOKEN")
login(token=hf_token, add_to_git_credential=True)
@spaces.GPU
def get_model_summary(model_name):
# Check if CUDA is available and set the device accordingly
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the model and move it to the selected device
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True).to(device)
# Return the model's architecture as a string
return str(model)
# Create the Gradio interface
interface = gr.Interface(
fn=get_model_summary,
inputs="text",
outputs="text",
examples=[
["google/gemma-7b"],
["microsoft/Phi-3-mini-4k-instruct"],
["google/paligemma-3b-mix-224"],
["microsoft/Phi-3-vision-128k-instruct"]
]
)
interface.launch()
|