dwb2023's picture
Update app.py
c7c02f9 verified
raw
history blame
3.74 kB
import gradio as gr
from datasets import load_dataset
from PIL import Image, ImageDraw
import numpy as np
from rdp import rdp
# Load the dataset
dataset = load_dataset("dwb2023/brain-tumor-image-dataset-semantic-segmentation", split="test")
def simplify_segmentation(segmentation, max_points=20):
if not segmentation or len(segmentation) == 0:
return []
epsilon = 1.0
simplified = rdp(np.array(segmentation), epsilon=epsilon)
while len(simplified) > max_points:
epsilon *= 1.5
simplified = rdp(np.array(segmentation), epsilon=epsilon)
return simplified.tolist()
def draw_annotations(index):
try:
# Fetch the image and annotations from the dataset
record = dataset[index]
# Convert image to PIL Image if it's a numpy array
if isinstance(record['image'], np.ndarray):
img = Image.fromarray(record['image'])
else:
img = record['image']
img = img.convert("RGB") # Ensure the image is in RGB mode
draw = ImageDraw.Draw(img)
# Draw bounding box
bbox = record["bbox"]
draw.rectangle([bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]], outline="red", width=2)
# Draw original segmentation mask
segmentation = record["segmentation"]
original_points = 0
simplified_points = 0
for seg in segmentation:
if seg: # Check if the segmentation is not empty
draw.polygon(seg, outline="blue", width=2)
original_points += len(seg)
# Simplify and draw simplified segmentation
simplified_seg = simplify_segmentation(seg)
draw.polygon(simplified_seg, outline="green", width=2)
simplified_points += len(simplified_seg)
# Prepare additional information
category_id = record["category_id"]
area = record["area"]
file_name = record["file_name"]
info = f"File Name: {file_name}\n"
info += f"Image ID: {record['id']}\n"
info += f"Category ID: {category_id}\n"
info += f"Bounding Box: [{bbox[0]:.2f}, {bbox[1]:.2f}, {bbox[2]:.2f}, {bbox[3]:.2f}]\n"
info += f"Original Segmentation Points: {original_points}\n"
info += f"Simplified Segmentation Points: {simplified_points}\n"
info += f"Area: {area:.2f}"
return img, info
except Exception as e:
print(f"Error processing image at index {index}: {e}")
return Image.new('RGB', (300, 300), color='gray'), f"Error loading image information: {str(e)}"
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Brain Tumor Image Dataset Viewer")
gr.Markdown("## Refer to the [dwb2023/brain-tumor-image-dataset-semantic-segmentation](https://huggingface.co/datasets/dwb2023/brain-tumor-image-dataset-semantic-segmentation/viewer/default/test) dataset for more information")
gr.Markdown("### Red: Bounding Box, Blue: Original Segmentation, Green: Simplified Segmentation (max 20 points)")
with gr.Row():
with gr.Column(scale=1):
image_output = gr.Image(label="Annotated Image")
with gr.Column(scale=1):
image_index = gr.Slider(minimum=0, maximum=len(dataset)-1, step=1, value=0, label="Image ID Slider")
info_output = gr.Textbox(label="Image Information", lines=10)
# Update image and info when slider changes
image_index.change(draw_annotations, inputs=image_index, outputs=[image_output, info_output])
# Display initial image and info
demo.load(draw_annotations, inputs=image_index, outputs=[image_output, info_output])
demo.launch(debug=True)