File size: 16,772 Bytes
fa90792 8778797 d93b5fd 8778797 4b5b682 8778797 4b5b682 8778797 4b5b682 8778797 9781a06 8778797 7ac1a1c fa90792 7ac1a1c fa90792 7ac1a1c fa90792 7ac1a1c 8778797 7fc34a4 8778797 f21ff4d 9781a06 8778797 9781a06 8778797 f21ff4d fa90792 823d883 8778797 fa90792 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
import gradio as gr
import torch
import gc # free up memory
import spaces
import gc
import os
import random
import numpy as np
from scipy.signal.windows import hann
import soundfile as sf
import torch
import librosa
from audiosr import build_model, super_resolution
from scipy import signal
import pyloudnorm as pyln
import tempfile
import spaces
class AudioUpscaler:
"""
Upscales audio using the AudioSR model.
"""
def __init__(self, model_name="basic", device="auto"):
"""
Initializes the AudioUpscaler.
Args:
model_name (str, optional): Name of the AudioSR model to use. Defaults to "basic".
device (str, optional): Device to use for inference. Defaults to "auto".
"""
self.model_name = model_name
self.device = device
self.sr = 48000
self.audiosr = None # Model will be loaded in setup()
def setup(self):
"""
Loads the AudioSR model.
"""
print("Loading Model...")
self.audiosr = build_model(model_name=self.model_name, device=self.device)
print("Model loaded!")
def _match_array_shapes(self, array_1: np.ndarray, array_2: np.ndarray):
"""
Matches the shapes of two arrays by padding the shorter one with zeros.
Args:
array_1 (np.ndarray): First array.
array_2 (np.ndarray): Second array.
Returns:
np.ndarray: The first array with a matching shape to the second array.
"""
if (len(array_1.shape) == 1) & (len(array_2.shape) == 1):
if array_1.shape[0] > array_2.shape[0]:
array_1 = array_1[: array_2.shape[0]]
elif array_1.shape[0] < array_2.shape[0]:
array_1 = np.pad(
array_1,
((array_2.shape[0] - array_1.shape[0], 0)),
"constant",
constant_values=0,
)
else:
if array_1.shape[1] > array_2.shape[1]:
array_1 = array_1[:, : array_2.shape[1]]
elif array_1.shape[1] < array_2.shape[1]:
padding = array_2.shape[1] - array_1.shape[1]
array_1 = np.pad(
array_1, ((0, 0), (0, padding)), "constant", constant_values=0
)
return array_1
def _lr_filter(
self, audio, cutoff, filter_type, order=12, sr=48000
):
"""
Applies a low-pass or high-pass filter to the audio.
Args:
audio (np.ndarray): Audio data.
cutoff (int): Cutoff frequency.
filter_type (str): Filter type ("lowpass" or "highpass").
order (int, optional): Filter order. Defaults to 12.
sr (int, optional): Sample rate. Defaults to 48000.
Returns:
np.ndarray: Filtered audio data.
"""
audio = audio.T
nyquist = 0.5 * sr
normal_cutoff = cutoff / nyquist
b, a = signal.butter(
order // 2, normal_cutoff, btype=filter_type, analog=False
)
sos = signal.tf2sos(b, a)
filtered_audio = signal.sosfiltfilt(sos, audio)
return filtered_audio.T
def _process_audio(
self,
input_file,
chunk_size=5.12,
overlap=0.1,
seed=None,
guidance_scale=3.5,
ddim_steps=50,
multiband_ensemble=True,
input_cutoff=14000,
):
"""
Processes the audio in chunks and performs upsampling.
Args:
input_file (str): Path to the input audio file.
chunk_size (float, optional): Chunk size in seconds. Defaults to 5.12.
overlap (float, optional): Overlap between chunks in seconds. Defaults to 0.1.
seed (int, optional): Random seed. Defaults to None.
guidance_scale (float, optional): Scale for classifier-free guidance. Defaults to 3.5.
ddim_steps (int, optional): Number of inference steps. Defaults to 50.
multiband_ensemble (bool, optional): Whether to use multiband ensemble. Defaults to True.
input_cutoff (int, optional): Input cutoff frequency for multiband ensemble. Defaults to 14000.
Returns:
np.ndarray: Upsampled audio data.
"""
audio, sr = librosa.load(input_file, sr=input_cutoff * 2, mono=False)
audio = audio.T
sr = input_cutoff * 2
is_stereo = len(audio.shape) == 2
if is_stereo:
audio_ch1, audio_ch2 = audio[:, 0], audio[:, 1]
else:
audio_ch1 = audio
chunk_samples = int(chunk_size * sr)
overlap_samples = int(overlap * chunk_samples)
output_chunk_samples = int(chunk_size * self.sr)
output_overlap_samples = int(overlap * output_chunk_samples)
enable_overlap = True if overlap > 0 else False
def process_chunks(audio):
chunks = []
original_lengths = []
start = 0
while start < len(audio):
print(f"{start} / {len(audio)}")
end = min(start + chunk_samples, len(audio))
chunk = audio[start:end]
if len(chunk) < chunk_samples:
original_lengths.append(len(chunk))
pad = np.zeros(chunk_samples - len(chunk))
chunk = np.concatenate([chunk, pad])
else:
original_lengths.append(chunk_samples)
chunks.append(chunk)
start += (
chunk_samples - overlap_samples
if enable_overlap
else chunk_samples
)
return chunks, original_lengths
chunks_ch1, original_lengths_ch1 = process_chunks(audio_ch1)
if is_stereo:
chunks_ch2, original_lengths_ch2 = process_chunks(audio_ch2)
sample_rate_ratio = self.sr / sr
total_length = (
len(chunks_ch1) * output_chunk_samples
- (len(chunks_ch1) - 1)
* (output_overlap_samples if enable_overlap else 0)
)
reconstructed_ch1 = np.zeros((1, total_length))
meter_before = pyln.Meter(sr)
meter_after = pyln.Meter(self.sr)
for i, chunk in enumerate(chunks_ch1):
print(f"{i} / {len(chunks_ch1)}")
loudness_before = meter_before.integrated_loudness(chunk)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as temp_wav:
sf.write(temp_wav.name, chunk, sr)
out_chunk = super_resolution(
self.audiosr,
temp_wav.name,
seed=seed,
guidance_scale=guidance_scale,
ddim_steps=ddim_steps,
latent_t_per_second=12.8,
)
out_chunk = out_chunk[0]
num_samples_to_keep = int(
original_lengths_ch1[i] * sample_rate_ratio
)
out_chunk = out_chunk[:, :num_samples_to_keep].squeeze()
loudness_after = meter_after.integrated_loudness(out_chunk)
out_chunk = pyln.normalize.loudness(
out_chunk, loudness_after, loudness_before
)
if enable_overlap:
actual_overlap_samples = min(
output_overlap_samples, num_samples_to_keep
)
fade_out = np.linspace(1.0, 0.0, actual_overlap_samples)
fade_in = np.linspace(0.0, 1.0, actual_overlap_samples)
if i == 0:
out_chunk[-actual_overlap_samples:] *= fade_out
elif i < len(chunks_ch1) - 1:
out_chunk[:actual_overlap_samples] *= fade_in
out_chunk[-actual_overlap_samples:] *= fade_out
else:
out_chunk[:actual_overlap_samples] *= fade_in
start = i * (
output_chunk_samples - output_overlap_samples
if enable_overlap
else output_chunk_samples
)
end = start + out_chunk.shape[0]
reconstructed_ch1[0, start:end] += out_chunk.flatten()
if is_stereo:
reconstructed_ch2 = np.zeros((1, total_length))
for i, chunk in enumerate(chunks_ch2):
print(f"{i} / {len(chunks_ch2)}")
loudness_before = meter_before.integrated_loudness(chunk)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as temp_wav:
sf.write(temp_wav.name, chunk, sr)
out_chunk = super_resolution(
self.audiosr,
temp_wav.name,
seed=seed,
guidance_scale=guidance_scale,
ddim_steps=ddim_steps,
latent_t_per_second=12.8,
)
out_chunk = out_chunk[0]
num_samples_to_keep = int(
original_lengths_ch2[i] * sample_rate_ratio
)
out_chunk = out_chunk[:, :num_samples_to_keep].squeeze()
loudness_after = meter_after.integrated_loudness(out_chunk)
out_chunk = pyln.normalize.loudness(
out_chunk, loudness_after, loudness_before
)
if enable_overlap:
actual_overlap_samples = min(
output_overlap_samples, num_samples_to_keep
)
fade_out = np.linspace(1.0, 0.0, actual_overlap_samples)
fade_in = np.linspace(0.0, 1.0, actual_overlap_samples)
if i == 0:
out_chunk[-actual_overlap_samples:] *= fade_out
elif i < len(chunks_ch1) - 1:
out_chunk[:actual_overlap_samples] *= fade_in
out_chunk[-actual_overlap_samples:] *= fade_out
else:
out_chunk[:actual_overlap_samples] *= fade_in
start = i * (
output_chunk_samples - output_overlap_samples
if enable_overlap
else output_chunk_samples
)
end = start + out_chunk.shape[0]
reconstructed_ch2[0, start:end] += out_chunk.flatten()
reconstructed_audio = np.stack(
[reconstructed_ch1, reconstructed_ch2], axis=-1
)
else:
reconstructed_audio = reconstructed_ch1
if multiband_ensemble:
low, _ = librosa.load(input_file, sr=48000, mono=False)
output = self._match_array_shapes(
reconstructed_audio[0].T, low
)
crossover_freq = input_cutoff - 1000
low = self._lr_filter(
low.T, crossover_freq, "lowpass", order=10
)
high = self._lr_filter(
output.T, crossover_freq, "highpass", order=10
)
high = self._lr_filter(
high, 23000, "lowpass", order=2
)
output = low + high
else:
output = reconstructed_audio[0]
return output
def predict(
self,
input_file,
output_folder,
ddim_steps=50,
guidance_scale=3.5,
overlap=0.04,
chunk_size=10.24,
seed=None,
multiband_ensemble=True,
input_cutoff=14000,
):
"""
Upscales the audio and saves the result.
Args:
input_file (str): Path to the input audio file.
output_folder (str): Path to the output folder.
ddim_steps (int, optional): Number of inference steps. Defaults to 50.
guidance_scale (float, optional): Scale for classifier-free guidance. Defaults to 3.5.
overlap (float, optional): Overlap between chunks. Defaults to 0.04.
chunk_size (float, optional): Chunk size in seconds. Defaults to 10.24.
seed (int, optional): Random seed. Defaults to None.
multiband_ensemble (bool, optional): Whether to use multiband ensemble. Defaults to True.
input_cutoff (int, optional): Input cutoff frequency for multiband ensemble. Defaults to 14000.
"""
if seed == 0:
seed = random.randint(0, 2**32 - 1)
os.makedirs(output_folder, exist_ok=True)
waveform = self._process_audio(
input_file,
chunk_size=chunk_size,
overlap=overlap,
seed=seed,
guidance_scale=guidance_scale,
ddim_steps=ddim_steps,
multiband_ensemble=multiband_ensemble,
input_cutoff=input_cutoff,
)
filename = os.path.splitext(os.path.basename(input_file))[0]
output_file = f"{output_folder}/SR_{filename}.wav"
sf.write(output_file, data=waveform, samplerate=48000, subtype="PCM_16")
print(f"File created: {output_file}")
# Cleanup
gc.collect()
torch.cuda.empty_cache()
return waveform
# return output_file
@spaces.GPU(duration=300)
def inference(audio_file, model_name, guidance_scale, ddim_steps, seed):
audiosr = build_model(model_name=model_name)
gc.collect()
# set random seed when seed input value is 0
if seed == 0:
import random
seed = random.randint(1, 2**32-1)
waveform = super_resolution(
audiosr,
audio_file,
seed,
guidance_scale=guidance_scale,
ddim_steps=ddim_steps
)
return (48000, waveform)
@spaces.GPU(duration=300)
def upscale_audio(
input_file,
output_folder,
ddim_steps=20,
guidance_scale=3.5,
overlap=0.04,
chunk_size=10.24,
seed=0,
multiband_ensemble=True,
input_cutoff=14000,
):
"""
Upscales the audio using the AudioSR model.
Args:
input_file (str): Path to the input audio file.
output_folder (str): Path to the output folder.
ddim_steps (int, optional): Number of inference steps. Defaults to 20.
guidance_scale (float, optional): Scale for classifier-free guidance. Defaults to 3.5.
overlap (float, optional): Overlap between chunks. Defaults to 0.04.
chunk_size (float, optional): Chunk size in seconds. Defaults to 10.24.
seed (int, optional): Random seed. Defaults to 0.
multiband_ensemble (bool, optional): Whether to use multiband ensemble. Defaults to True.
input_cutoff (int, optional): Input cutoff frequency for multiband ensemble. Defaults to 14000.
Returns:
tuple: Upscaled audio data and sample rate.
"""
torch.cuda.empty_cache()
gc.collect()
upscaler = AudioUpscaler()
upscaler.setup()
waveform = upscaler.predict(
input_file,
output_folder,
ddim_steps=ddim_steps,
guidance_scale=guidance_scale,
overlap=overlap,
chunk_size=chunk_size,
seed=seed,
multiband_ensemble=multiband_ensemble,
input_cutoff=input_cutoff,
)
torch.cuda.empty_cache()
gc.collect()
return (48000,waveform)
os.getcwd()
gr.Textbox
iface = gr.Interface(
fn=upscale_audio,
inputs=[
gr.Audio(type="filepath", label="Input Audio"),
gr.Textbox(".",label="Out-dir"),
gr.Slider(10, 500, value=20, step=1, label="DDIM Steps", info="Number of inference steps (quality/speed)"),
gr.Slider(1.0, 20.0, value=3.5, step=0.1, label="Guidance Scale", info="Guidance scale (creativity/fidelity)"),
gr.Slider(0.0, 0.5, value=0.04, step=0.01, label="Overlap (s)", info="Overlap between chunks (smooth transitions)"),
gr.Slider(5.12, 20.48, value=5.12, step=0.64, label="Chunk Size (s)", info="Chunk size (memory/artifact balance)"),
gr.Number(value=0, precision=0, label="Seed", info="Random seed (0 for random)"),
gr.Checkbox(label="Multiband Ensemble", value=False, info="Enhance high frequencies"),
gr.Slider(500, 15000, value=9000, step=500, label="Crossover Frequency (Hz)", info="For multiband processing", visible=True)
],
outputs=gr.Audio(type="numpy", label="Output Audio"),
title="AudioSR",
description="Audio Super Resolution with AudioSR"
)
iface.launch(share=False)
|