|
import torch |
|
import numpy as np |
|
from scipy.io.wavfile import write |
|
import torchaudio |
|
|
|
from audiosr.utilities.audio.audio_processing import griffin_lim |
|
|
|
|
|
def pad_wav(waveform, segment_length): |
|
waveform_length = waveform.shape[-1] |
|
assert waveform_length > 100, "Waveform is too short, %s" % waveform_length |
|
if segment_length is None or waveform_length == segment_length: |
|
return waveform |
|
elif waveform_length > segment_length: |
|
return waveform[:segment_length] |
|
elif waveform_length < segment_length: |
|
temp_wav = np.zeros((1, segment_length)) |
|
temp_wav[:, :waveform_length] = waveform |
|
return temp_wav |
|
|
|
|
|
def normalize_wav(waveform): |
|
waveform = waveform - np.mean(waveform) |
|
waveform = waveform / (np.max(np.abs(waveform)) + 1e-8) |
|
return waveform * 0.5 |
|
|
|
|
|
def read_wav_file(filename, segment_length): |
|
|
|
waveform, sr = torchaudio.load(filename) |
|
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000) |
|
waveform = waveform.numpy()[0, ...] |
|
waveform = normalize_wav(waveform) |
|
waveform = waveform[None, ...] |
|
waveform = pad_wav(waveform, segment_length) |
|
|
|
waveform = waveform / np.max(np.abs(waveform)) |
|
waveform = 0.5 * waveform |
|
|
|
return waveform |
|
|
|
|
|
def get_mel_from_wav(audio, _stft): |
|
audio = torch.clip(torch.FloatTensor(audio).unsqueeze(0), -1, 1) |
|
audio = torch.autograd.Variable(audio, requires_grad=False) |
|
melspec, magnitudes, phases, energy = _stft.mel_spectrogram(audio) |
|
melspec = torch.squeeze(melspec, 0).numpy().astype(np.float32) |
|
magnitudes = torch.squeeze(magnitudes, 0).numpy().astype(np.float32) |
|
energy = torch.squeeze(energy, 0).numpy().astype(np.float32) |
|
return melspec, magnitudes, energy |
|
|
|
|
|
def inv_mel_spec(mel, out_filename, _stft, griffin_iters=60): |
|
mel = torch.stack([mel]) |
|
mel_decompress = _stft.spectral_de_normalize(mel) |
|
mel_decompress = mel_decompress.transpose(1, 2).data.cpu() |
|
spec_from_mel_scaling = 1000 |
|
spec_from_mel = torch.mm(mel_decompress[0], _stft.mel_basis) |
|
spec_from_mel = spec_from_mel.transpose(0, 1).unsqueeze(0) |
|
spec_from_mel = spec_from_mel * spec_from_mel_scaling |
|
|
|
audio = griffin_lim( |
|
torch.autograd.Variable(spec_from_mel[:, :, :-1]), _stft._stft_fn, griffin_iters |
|
) |
|
|
|
audio = audio.squeeze() |
|
audio = audio.cpu().numpy() |
|
audio_path = out_filename |
|
write(audio_path, _stft.sampling_rate, audio) |
|
|