|
import torch |
|
import numpy as np |
|
import librosa.util as librosa_util |
|
from scipy.signal import get_window |
|
|
|
|
|
def window_sumsquare( |
|
window, |
|
n_frames, |
|
hop_length, |
|
win_length, |
|
n_fft, |
|
dtype=np.float32, |
|
norm=None, |
|
): |
|
""" |
|
# from librosa 0.6 |
|
Compute the sum-square envelope of a window function at a given hop length. |
|
|
|
This is used to estimate modulation effects induced by windowing |
|
observations in short-time fourier transforms. |
|
|
|
Parameters |
|
---------- |
|
window : string, tuple, number, callable, or list-like |
|
Window specification, as in `get_window` |
|
|
|
n_frames : int > 0 |
|
The number of analysis frames |
|
|
|
hop_length : int > 0 |
|
The number of samples to advance between frames |
|
|
|
win_length : [optional] |
|
The length of the window function. By default, this matches `n_fft`. |
|
|
|
n_fft : int > 0 |
|
The length of each analysis frame. |
|
|
|
dtype : np.dtype |
|
The data type of the output |
|
|
|
Returns |
|
------- |
|
wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))` |
|
The sum-squared envelope of the window function |
|
""" |
|
if win_length is None: |
|
win_length = n_fft |
|
|
|
n = n_fft + hop_length * (n_frames - 1) |
|
x = np.zeros(n, dtype=dtype) |
|
|
|
|
|
win_sq = get_window(window, win_length, fftbins=True) |
|
win_sq = librosa_util.normalize(win_sq, norm=norm) ** 2 |
|
win_sq = librosa_util.pad_center(data=win_sq, size=n_fft) |
|
|
|
|
|
for i in range(n_frames): |
|
sample = i * hop_length |
|
x[sample : min(n, sample + n_fft)] += win_sq[: max(0, min(n_fft, n - sample))] |
|
return x |
|
|
|
|
|
def griffin_lim(magnitudes, stft_fn, n_iters=30): |
|
""" |
|
PARAMS |
|
------ |
|
magnitudes: spectrogram magnitudes |
|
stft_fn: STFT class with transform (STFT) and inverse (ISTFT) methods |
|
""" |
|
|
|
angles = np.angle(np.exp(2j * np.pi * np.random.rand(*magnitudes.size()))) |
|
angles = angles.astype(np.float32) |
|
angles = torch.autograd.Variable(torch.from_numpy(angles)) |
|
signal = stft_fn.inverse(magnitudes, angles).squeeze(1) |
|
|
|
for i in range(n_iters): |
|
_, angles = stft_fn.transform(signal) |
|
signal = stft_fn.inverse(magnitudes, angles).squeeze(1) |
|
return signal |
|
|
|
|
|
def dynamic_range_compression(x, normalize_fun=torch.log, C=1, clip_val=1e-5): |
|
""" |
|
PARAMS |
|
------ |
|
C: compression factor |
|
""" |
|
return normalize_fun(torch.clamp(x, min=clip_val) * C) |
|
|
|
|
|
def dynamic_range_decompression(x, C=1): |
|
""" |
|
PARAMS |
|
------ |
|
C: compression factor used to compress |
|
""" |
|
return torch.exp(x) / C |
|
|