File size: 38,474 Bytes
55e1fc0 169a94e 55e1fc0 169a94e 55e1fc0 169a94e 55e1fc0 169a94e 55e1fc0 169a94e 55e1fc0 169a94e 299c2ce 55e1fc0 169a94e 55e1fc0 169a94e 55e1fc0 169a94e 55e1fc0 169a94e 55e1fc0 169a94e 55e1fc0 169a94e 55e1fc0 169a94e 55e1fc0 169a94e 55e1fc0 169a94e 55e1fc0 169a94e 55e1fc0 cc1687a 169a94e 55e1fc0 169a94e 55e1fc0 169a94e 55e1fc0 169a94e 55e1fc0 169a94e 55e1fc0 169a94e 55e1fc0 169a94e 6389c61 299c2ce 169a94e 299c2ce 55e1fc0 169a94e cc1687a 299c2ce 169a94e fb21a11 55e1fc0 fb21a11 169a94e 55e1fc0 169a94e 299c2ce 6389c61 169a94e 4b2f370 169a94e 299c2ce 169a94e 55e1fc0 4b2f370 169a94e c32d410 169a94e c32d410 169a94e c32d410 299c2ce 169a94e c32d410 55e1fc0 169a94e c32d410 299c2ce 169a94e 55e1fc0 169a94e 55e1fc0 169a94e 55e1fc0 169a94e 55e1fc0 169a94e 55e1fc0 6389c61 169a94e 55e1fc0 169a94e 55e1fc0 169a94e 55e1fc0 169a94e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 |
import gradio as gr
import asyncio
from asyncio import Semaphore # Added for concurrency control
from pathlib import Path
import os
import tempfile # Added for temporary chunk files
import traceback # Import traceback for better error logging
import re
import pandas as pd
from dataclasses import dataclass
from typing import Dict, AsyncGenerator, Tuple, Any, List
# Use standard import convention for genai
# Assuming genai is installed and configured elsewhere
from google import genai
from youtube_transcript_api import YouTubeTranscriptApi
# Import pydub for audio manipulation
from pydub import AudioSegment
from pydub.exceptions import CouldntDecodeError
# --- Constants ---
PROMPT_KEYS = ["titles_and_thumbnails", "description", "previews", "clips", "timestamps"]
PROMPT_DISPLAY_NAMES = {
"titles_and_thumbnails": "Titles and Thumbnails",
"description": "Twitter Description",
"previews": "Preview Clips",
"clips": "Twitter Clips",
"timestamps": "Timestamps"
}
# --- MODIFIED: Increased chunk size to 30 minutes ---
AUDIO_CHUNK_DURATION_MS = 30 * 60 * 1000 # Process audio in 30-minute chunks
# --- ADDED: Concurrency Limits ---
MAX_CONCURRENT_TRANSCRIPTIONS = 3 # Limit simultaneous transcription API calls
MAX_CONCURRENT_GENERATIONS = 4 # Limit simultaneous content generation API calls
# --- Core Classes (ContentRequest, ContentGenerator) ---
# (ContentRequest and ContentGenerator remain unchanged)
@dataclass
class ContentRequest:
prompt_key: str
class ContentGenerator:
def __init__(self):
self.current_prompts = self._load_default_prompts()
self.client: genai.Client | None = None
def _load_default_prompts(self) -> Dict[str, str]:
# (Implementation identical to previous version)
prompts = {}
timestamp_examples, title_examples, description_examples, clip_examples = "", "", "", ""
try:
data_dir = Path("data")
if data_dir.is_dir():
try: timestamps_df = pd.read_csv(data_dir / "Timestamps.csv"); timestamp_examples = "\n\n".join(timestamps_df['Timestamps'].dropna().tolist())
except Exception as e: print(f"Warning: Loading Timestamps.csv failed: {e}")
try: titles_df = pd.read_csv(data_dir / "Titles & Thumbnails.csv"); title_examples = "\n".join([f'Title: "{r.Titles}"\nThumbnail: "{r.Thumbnail}"' for _, r in titles_df.iterrows() if pd.notna(r.Titles) and pd.notna(r.Thumbnail)])
except Exception as e: print(f"Warning: Loading Titles & Thumbnails.csv failed: {e}")
try: descriptions_df = pd.read_csv(data_dir / "Viral Episode Descriptions.csv"); description_examples = "\n".join([f'Tweet: "{r["Tweet Text"]}"' for _, r in descriptions_df.iterrows() if pd.notna(r["Tweet Text"])])
except Exception as e: print(f"Warning: Loading Viral Episode Descriptions.csv failed: {e}")
try: clips_df = pd.read_csv(data_dir / "Viral Twitter Clips.csv"); clip_examples = "\n\n".join([f'Tweet Text: "{r["Tweet Text"]}"\nClip Transcript: "{r["Clip Transcript"]}"' for _, r in clips_df.iterrows() if pd.notna(r["Tweet Text"]) and pd.notna(r["Clip Transcript"])])
except Exception as e: print(f"Warning: Loading Viral Twitter Clips.csv failed: {e}")
else: print("Warning: 'data' directory not found.")
except Exception as e: print(f"Warning: Error accessing 'data' directory: {e}")
prompts_dir = Path("prompts")
if not prompts_dir.is_dir():
print("Error: 'prompts' directory not found.")
return {key: f"ERROR: Prompt directory missing." for key in PROMPT_KEYS}
for key in PROMPT_KEYS:
try:
prompt = (prompts_dir / f"{key}.txt").read_text(encoding='utf-8')
if key == "timestamps": prompt = prompt.replace("{timestamps_examples}", timestamp_examples)
elif key == "titles_and_thumbnails": prompt = prompt.replace("{title_examples}", title_examples)
elif key == "description": prompt = prompt.replace("{description_examples}", description_examples)
elif key == "clips": prompt = prompt.replace("{clip_examples}", clip_examples)
prompts[key] = prompt
except Exception as e:
print(f"Warning: Loading prompt prompts/{key}.txt failed: {e}")
prompts[key] = f"Generate {key} based on the transcript. Do not use markdown formatting." # Fallback
for key in PROMPT_KEYS: prompts.setdefault(key, f"Generate {key} based on the transcript. Do not use markdown formatting.")
return prompts
async def generate_content(self, request: ContentRequest, transcript: str) -> str:
# (Implementation identical to previous version)
if not self.client: return "ERROR_CONFIGURATION: Gemini Client not initialized."
if not transcript: return "ERROR_INTERNAL: Empty transcript provided for content generation."
try:
system_prompt = self.current_prompts.get(request.prompt_key)
if not system_prompt: return f"ERROR_INTERNAL: System prompt for '{request.prompt_key}' missing."
contents_for_api = [system_prompt, transcript]
# --- IMPORTANT: Model kept as gemini-1.5-flash ---
model_name = "gemini-2.5-pro-preview-03-25"
response = await asyncio.to_thread(
self.client.models.generate_content, model=model_name, contents=contents_for_api
)
if not response: return f"ERROR_API: No response received for {request.prompt_key}."
try:
if response.text:
try:
if hasattr(response, 'prompt_feedback') and response.prompt_feedback.block_reason:
reason = response.prompt_feedback.block_reason.name; return f"ERROR_BLOCKED: Blocked by API. Reason: {reason}"
except AttributeError: pass
return str(response.text.strip())
else:
if response.candidates and response.candidates[0].content and response.candidates[0].content.parts:
full_text = "".join(part.text for part in response.candidates[0].content.parts if hasattr(part, 'text')).strip()
if full_text:
print(f"Warning: Used fallback text extraction via candidates for {request.prompt_key}")
return str(full_text)
return f"ERROR_NO_TEXT: Could not extract text from response for {request.prompt_key}."
except (ValueError, AttributeError) as e:
print(f"Error accessing response text/feedback for {request.prompt_key} (potentially blocked): {e}")
reason = "Unknown"
try:
if hasattr(response, 'prompt_feedback') and response.prompt_feedback.block_reason: reason = response.prompt_feedback.block_reason.name
except AttributeError: pass
return f"ERROR_BLOCKED: Content generation failed (possibly blocked). Reason: {reason}"
except Exception as e:
print(f"Error generating content for {request.prompt_key}: {traceback.format_exc()}")
error_str = str(e).lower()
# Add specific check for rate limit errors if the API provides clear indicators
if "rate limit exceeded" in error_str or "quota exceeded" in error_str or "429" in error_str:
return f"ERROR_RATE_LIMIT: API limit likely exceeded. Details: {str(e)}"
elif "permission denied" in error_str or "api key not valid" in error_str: return f"ERROR_PERMISSION_DENIED: API Error (Permission Denied?). Check Key. Details: {str(e)}"
# elif "quota" in error_str: return f"ERROR_QUOTA: API Quota Error. Details: {str(e)}" # Covered by rate limit check above
elif "model" in error_str and "not found" in error_str: return f"ERROR_MODEL_NOT_FOUND: Model name likely incorrect. Details: {str(e)}"
else: return f"ERROR_API_GENERAL: API Error during generation. Details: {str(e)}"
def update_prompts(self, *values):
# (Implementation identical to previous version)
updated_keys = []
for key, value in zip(PROMPT_KEYS, values):
if isinstance(value, str): self.current_prompts[key] = value; updated_keys.append(key)
return f"Prompts updated: {', '.join(updated_keys)}" if updated_keys else "No prompts updated."
# (extract_video_id and get_transcript remain unchanged)
def extract_video_id(url: str) -> str | None:
patterns = [r"(?:v=|\/)([0-9A-Za-z_-]{11}).*", r"youtu\.be\/([0-9A-Za-z_-]{11})"]
for pattern in patterns:
match = re.search(pattern, url);
if match: return match.group(1)
return None
def get_transcript(video_id: str) -> str:
if not video_id: raise ValueError("Invalid Video ID")
try:
t_list = YouTubeTranscriptApi.list_transcripts(video_id)
transcript = t_list.find_transcript(['en', 'en-US'])
fetched = transcript.fetch()
if not fetched: raise ValueError("Fetched transcript empty")
return " ".join(entry.get("text", "") for entry in fetched).strip()
except Exception as e:
return f"ERROR_TRANSCRIPT_FETCH: Failed for ID '{video_id}'. Reason: {e}"
# --- TranscriptProcessor Class (Refactored for Concurrency Control) ---
class TranscriptProcessor:
def __init__(self):
self.generator = ContentGenerator()
# (Helper _get_youtube_transcript remains unchanged)
def _get_youtube_transcript(self, url: str) -> str:
# ... (identical implementation)
print(f"Extracting Video ID from: {url}")
video_id = extract_video_id(url)
if not video_id: raise ValueError(f"Invalid YouTube URL/ID: {url}")
print(f"Video ID: {video_id}. Fetching transcript...")
try:
transcript = get_transcript(video_id)
if transcript.startswith("ERROR_TRANSCRIPT_FETCH"): raise Exception(transcript)
if not transcript: raise ValueError(f"Empty transcript for ID: {video_id}")
print(f"Transcript fetched (length: {len(transcript)}).")
return transcript
except Exception as e: print(f"Error fetching YouTube transcript: {e}"); raise Exception(f"Failed to get YouTube transcript: {str(e)}")
# --- MODIFIED: Added Semaphore argument ---
async def _transcribe_chunk(self, client: genai.Client, chunk_path: Path, chunk_index: int, total_chunks: int, semaphore: Semaphore) -> str:
"""Transcribes a single audio chunk using Gemini API, respecting the semaphore."""
# Acquire semaphore before proceeding
async with semaphore:
print(f"Semaphore acquired for chunk {chunk_index + 1}/{total_chunks}. Processing...")
gemini_audio_file_ref = None
try:
print(f"Uploading chunk {chunk_index + 1}/{total_chunks}: {chunk_path.name}")
gemini_audio_file_ref = await asyncio.to_thread(client.files.upload, file=chunk_path)
print(f"Chunk {chunk_index + 1} uploaded. File Ref: {gemini_audio_file_ref.name}")
prompt_for_transcription = "Transcribe the following audio file accurately."
contents = [prompt_for_transcription, gemini_audio_file_ref]
# --- IMPORTANT: Model kept as gemini-1.5-flash ---
model_name = "gemini-2.5-pro-preview-03-25"
print(f"Requesting transcription for chunk {chunk_index + 1}...")
# Make the API call *within* the semaphore lock
transcription_response = await asyncio.to_thread(
client.models.generate_content, model=model_name, contents=contents
)
print(f"Transcription response received for chunk {chunk_index + 1}.")
# Extract transcript text (identical logic)
transcript_piece = ""
try:
if transcription_response.text:
transcript_piece = transcription_response.text.strip()
elif transcription_response.candidates and transcription_response.candidates[0].content and transcription_response.candidates[0].content.parts:
transcript_piece = "".join(part.text for part in transcription_response.candidates[0].content.parts if hasattr(part, 'text')).strip()
if not transcript_piece and hasattr(transcription_response, 'prompt_feedback') and transcription_response.prompt_feedback.block_reason:
reason = transcription_response.prompt_feedback.block_reason.name
print(f"Warning: Transcription blocked for chunk {chunk_index + 1}. Reason: {reason}")
return f"[CHUNK_ERROR: Blocked - {reason}]"
print(f"Chunk {chunk_index + 1} transcript length: {len(transcript_piece)}")
return str(transcript_piece)
except (ValueError, AttributeError, Exception) as extraction_err:
print(f"Error extracting transcript for chunk {chunk_index + 1}: {extraction_err}. Response: {transcription_response}")
return f"[CHUNK_ERROR: Extraction Failed - {str(extraction_err)}]"
except Exception as e:
print(f"Error processing chunk {chunk_index + 1} (within semaphore): {traceback.format_exc()}")
error_str = str(e).lower()
# Add specific check for rate limit errors
if "rate limit exceeded" in error_str or "quota exceeded" in error_str or "429" in error_str:
return f"[CHUNK_ERROR: API Rate Limit Exceeded - {str(e)}]"
elif "permission denied" in error_str or "api key not valid" in error_str:
return f"[CHUNK_ERROR: API Permission Denied - {str(e)}]"
elif "file size" in error_str:
return f"[CHUNK_ERROR: File Size Limit Exceeded - {str(e)}]"
else:
return f"[CHUNK_ERROR: General API/Processing Error - {str(e)}]"
finally:
# Cleanup happens *before* semaphore is released automatically by 'async with'
if gemini_audio_file_ref:
# Run cleanup in background to avoid blocking semaphore release if deletion is slow
asyncio.create_task(self.delete_uploaded_file(client, gemini_audio_file_ref.name, f"chunk {chunk_index + 1} cleanup"))
if chunk_path.exists():
try:
os.remove(chunk_path)
except OSError as e:
print(f"Warning: Could not delete local temp chunk file {chunk_path}: {e}")
print(f"Semaphore released for chunk {chunk_index + 1}/{total_chunks}.")
# Semaphore is automatically released when exiting 'async with' block
async def process_transcript(self, client: genai.Client, audio_file: Any) -> AsyncGenerator[Tuple[str, Any], None]:
"""
Processes audio with larger chunks and controlled concurrency using Semaphores.
"""
if AudioSegment is None:
yield "error", "Audio processing library (pydub) not loaded. Cannot proceed."
return
if not client:
yield "error", "Gemini Client object was not provided."
return
self.generator.client = client
if not audio_file:
yield "error", "No audio file provided."
return
audio_path_str = getattr(audio_file, 'name', None)
if not audio_path_str:
yield "error", "Invalid audio file object."
return
original_audio_path = Path(audio_path_str)
if not original_audio_path.exists():
yield "error", f"Audio file not found: {original_audio_path}"
return
# --- ADDED: Initialize Semaphores ---
transcription_semaphore = Semaphore(MAX_CONCURRENT_TRANSCRIPTIONS)
generation_semaphore = Semaphore(MAX_CONCURRENT_GENERATIONS)
try:
yield "status", f"Loading audio file: {original_audio_path.name}..."
print(f"Loading audio file with pydub: {original_audio_path}")
try:
file_format = original_audio_path.suffix.lower().replace('.', '')
audio = AudioSegment.from_file(original_audio_path, format=file_format if file_format else None)
except CouldntDecodeError as decode_error:
print(f"pydub decode error: {decode_error}. Make sure ffmpeg is installed.")
yield "error", f"Failed to load/decode audio file: {original_audio_path.name}. Ensure valid format and ffmpeg."
return
except Exception as load_err:
print(f"Error loading audio with pydub: {traceback.format_exc()}")
yield "error", f"Error loading audio file {original_audio_path.name}: {load_err}"
return
duration_ms = len(audio)
# --- MODIFIED: Chunk duration increased ---
total_chunks = (duration_ms + AUDIO_CHUNK_DURATION_MS - 1) // AUDIO_CHUNK_DURATION_MS
print(f"Audio loaded. Duration: {duration_ms / 1000:.2f}s. Splitting into {total_chunks} x {AUDIO_CHUNK_DURATION_MS / 60000:.1f}min chunks.")
yield "status", f"Audio loaded ({duration_ms / 1000:.2f}s). Transcribing in {total_chunks} chunks (max {MAX_CONCURRENT_TRANSCRIPTIONS} concurrent)..."
transcript_pieces = [""] * total_chunks # Pre-allocate list to store pieces in order
transcription_tasks = []
# --- MODIFIED: Create tasks with semaphore ---
for i in range(total_chunks):
start_ms = i * AUDIO_CHUNK_DURATION_MS
end_ms = min((i + 1) * AUDIO_CHUNK_DURATION_MS, duration_ms)
chunk = audio[start_ms:end_ms]
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_chunk_file:
chunk_path = Path(temp_chunk_file.name)
try:
chunk.export(chunk_path, format="wav")
except Exception as export_err:
print(f"Error exporting chunk {i+1}: {traceback.format_exc()}")
yield "error", f"Failed to create temporary audio chunk file: {export_err}"
if chunk_path.exists(): os.remove(chunk_path)
return
# Pass semaphore to the chunk transcription function
task = asyncio.create_task(self._transcribe_chunk(client, chunk_path, i, total_chunks, transcription_semaphore))
# Store task along with its index to place result correctly
transcription_tasks.append((i, task))
# Process transcription results as they complete, maintaining order
processed_chunks = 0
# Wait for all tasks using gather, but process results as they come in via callbacks or checking task states?
# Using asyncio.gather might be simpler here if we need all results before proceeding. Let's try gather.
# results = await asyncio.gather(*(task for _, task in transcription_tasks), return_exceptions=True)
# Alternative: Process as completed, but store in correct order
temp_results = {}
for index, task in transcription_tasks:
try:
result = await task
temp_results[index] = result
processed_chunks += 1
yield "status", f"Transcribed chunk {processed_chunks}/{total_chunks}..."
# Check for critical chunk errors immediately if needed
if isinstance(result, str) and ("[CHUNK_ERROR: API Rate Limit Exceeded" in result or \
"[CHUNK_ERROR: API Permission Denied" in result or \
"[CHUNK_ERROR: API Quota Exceeded" in result):
print(f"Critical API error in chunk {index + 1}, stopping transcription. Error: {result}")
yield "error", f"Transcription stopped. Critical API error in chunk {index + 1}: {result.split('-', 1)[-1].strip()}"
# Cancel remaining tasks (important!)
for j, other_task in transcription_tasks:
if not other_task.done():
other_task.cancel()
return # Stop processing
except asyncio.CancelledError:
print(f"Transcription task for chunk {index + 1} was cancelled.")
temp_results[index] = "[CHUNK_ERROR: Cancelled]"
# If one task is cancelled due to an error in another, we might stop everything
if processed_chunks < total_chunks: # Avoid double error message if already stopped
yield "error", "Transcription process was cancelled."
return
except Exception as e:
print(f"Error waiting for transcription task {index + 1}: {traceback.format_exc()}")
temp_results[index] = f"[CHUNK_ERROR: Task Processing Failed - {str(e)}]"
processed_chunks += 1 # Count as processed even though it failed
# Reconstruct the transcript in the correct order
transcript_pieces = [temp_results.get(i, "[CHUNK_ERROR: Missing Result]") for i in range(total_chunks)]
full_transcript = " ".join(transcript_pieces).strip()
# Improved check for transcription failure
if not full_transcript or full_transcript.isspace() or all(s.startswith("[CHUNK_ERROR") for s in transcript_pieces if s):
error_summary = " ".join(p for p in transcript_pieces if p.startswith("[CHUNK_ERROR"))
print(f"Transcription failed or resulted in only errors. Summary: {error_summary}")
yield "error", f"Failed to transcribe audio or all chunks failed. Errors: {error_summary[:200]}"
return
print(f"Full transcript concatenated (length: {len(full_transcript)}).")
yield "status", "Transcription complete. Generating content..."
# --- Generate other content using the FULL transcript with Semaphore ---
generation_tasks = []
for key in PROMPT_KEYS:
# Pass generation semaphore to the item generation function
task = asyncio.create_task(self._generate_single_item(key, full_transcript, generation_semaphore))
generation_tasks.append(task)
generated_items = 0
total_items = len(PROMPT_KEYS)
# Process generation results as they complete
for future in asyncio.as_completed(generation_tasks):
try:
key, result = await future # Result from _generate_single_item
yield "progress", (key, result)
generated_items += 1
# More granular status for generation
yield "status", f"Generating content ({key} done, {generated_items}/{total_items} total)..."
except asyncio.CancelledError:
# Should not happen unless transcription failed and cancelled tasks
print("Content generation task was cancelled.")
yield "error", "Content generation cancelled."
return
except Exception as e:
print(f"Error processing completed generation task: {traceback.format_exc()}")
yield "status", f"Error during content generation phase: {str(e)}"
# Optionally yield an error for the specific item?
# key_if_possible = "unknown_key" # How to get key here? Task doesn't easily pass it back on exception
# yield "progress", (key_if_possible, f"ERROR_GENERATION: {str(e)}")
yield "status", "All content generation tasks complete."
except FileNotFoundError as e:
yield "error", f"File Error: {str(e)}"
return
except Exception as e: # Catch-all for transcription setup phase
print(f"Error during transcription setup/chunking phase: {traceback.format_exc()}")
yield "error", f"System Error during transcription setup: {str(e)}"
return
async def delete_uploaded_file(self, client: genai.Client, file_name: str, context: str):
# (Implementation identical - called in background now)
if not client or not file_name:
# print(f"Skipping deletion: Invalid client or file name ({context}).") # Reduce noise
return
try:
# print(f"Attempting background cleanup: {file_name} ({context})")
await asyncio.to_thread(client.files.delete, name=file_name)
print(f"Successfully cleaned up Gemini file: {file_name} ({context})")
except Exception as cleanup_err:
if "not found" in str(cleanup_err).lower() or "404" in str(cleanup_err):
pass # Ignore file not found during cleanup
# print(f"Info: File {file_name} likely already deleted ({context}).")
else:
print(f"Warning: Failed Gemini file cleanup for {file_name} ({context}): {cleanup_err}")
# --- MODIFIED: Added Semaphore argument ---
async def _generate_single_item(self, key: str, transcript: str, semaphore: Semaphore) -> Tuple[str, str]:
"""Helper to generate one piece of content, respecting the semaphore."""
# Acquire semaphore before calling the API
async with semaphore:
print(f"Semaphore acquired for generating: {key}. Calling API...")
result = await self.generator.generate_content(ContentRequest(key), transcript)
print(f"Finished generation task for: {key}. Semaphore released.")
# Semaphore is released automatically by 'async with'
return key, result
def update_prompts(self, *values) -> str:
# (Implementation identical to previous version)
return self.generator.update_prompts(*values)
# --- Gradio Interface Creation (UI remains unchanged from previous version) ---
def create_interface():
"""Create the Gradio interface (UI definition identical to last version)."""
processor = TranscriptProcessor()
key_titles = "titles_and_thumbnails"
key_desc = "description"
key_previews = "previews"
key_clips = "clips"
key_timestamps = "timestamps"
display_titles = PROMPT_DISPLAY_NAMES[key_titles]
display_desc = PROMPT_DISPLAY_NAMES[key_desc]
display_previews = PROMPT_DISPLAY_NAMES[key_previews]
display_clips = PROMPT_DISPLAY_NAMES[key_clips]
display_timestamps = PROMPT_DISPLAY_NAMES[key_timestamps]
with gr.Blocks(title="Gemini Podcast Content Generator") as app:
gr.Markdown(
"""
# Gemini Podcast Content Generator
Generate social media content from podcast audio using Gemini.
Enter your Google API key below and upload an audio file.
Audio will be processed in larger (~30min) chunks with controlled concurrency.
"""
) # Updated description slightly
with gr.Tab("Generate Content"):
google_api_key_input = gr.Textbox(
label="Google API Key", type="password",
placeholder="Enter your Google API Key here",
info="Your GCP account needs to have billing enabled to use the 2.5 pro model."
)
input_audio = gr.File(
label="Upload Audio File", file_count="single",
file_types=["audio", ".mp3", ".wav", ".ogg", ".flac", ".m4a", ".aac"]
)
submit_btn = gr.Button("Generate with Gemini", variant="huggingface")
gr.Markdown("### Processing Status")
output_status = gr.Textbox(label="Current Status", value="Idle.", interactive=False, lines=1, max_lines=5)
gr.Markdown(f"### {display_titles}")
output_titles = gr.Textbox(label="", value="...", interactive=False, lines=3, max_lines=10)
gr.Markdown(f"### {display_desc}")
output_desc = gr.Textbox(label="", value="...", interactive=False, lines=3, max_lines=10)
gr.Markdown(f"### {display_previews}")
output_previews = gr.Textbox(label="", value="...", interactive=False, lines=3, max_lines=10)
gr.Markdown(f"### {display_clips}")
output_clips = gr.Textbox(label="", value="...", interactive=False, lines=3, max_lines=10)
gr.Markdown(f"### {display_timestamps}")
output_timestamps = gr.Textbox(label="", value="...", interactive=False, lines=3, max_lines=10)
outputs_list = [
output_status,
output_titles, output_desc, output_previews,
output_clips, output_timestamps
]
results_component_map = {
key_titles: output_titles, key_desc: output_desc, key_previews: output_previews,
key_clips: output_clips, key_timestamps: output_timestamps
}
# --- process_wrapper (UI Update Logic - largely unchanged) ---
async def process_wrapper(google_key, audio_file_obj, progress=gr.Progress(track_tqdm=True)):
print("Started Processing...")
initial_updates = {
output_status: gr.update(value="Initiating..."),
output_titles: gr.update(value="β³ Pending..."),
output_desc: gr.update(value="β³ Pending..."),
output_previews: gr.update(value="β³ Pending..."),
output_clips: gr.update(value="β³ Pending..."),
output_timestamps: gr.update(value="β³ Pending..."),
}
yield initial_updates
if not google_key:
yield {output_status: gr.update(value="π Error: Missing Google API Key.")}
return
if not audio_file_obj:
yield {output_status: gr.update(value="π Error: No audio file uploaded.")}
return
masked_key = f"{'*'*(len(google_key)-4)}{google_key[-4:]}" if len(google_key) > 4 else "****"
print(f"Using Google Key: {masked_key}")
print(f"Audio file: Name='{getattr(audio_file_obj, 'name', 'N/A')}'")
client: genai.Client | None = None
try:
yield {output_status: gr.update(value="β³ Initializing Gemini Client...")}
client = await asyncio.to_thread(genai.Client, api_key=google_key)
print("Gemini Client initialized successfully.")
yield {output_status: gr.update(value="β
Client Initialized.")}
except Exception as e:
error_msg = f"π Error: Failed Client Initialization: {e}"
print(f"Client Init Error: {traceback.format_exc()}")
yield {output_status: gr.update(value=error_msg)}
return
updates_to_yield = {}
try:
# Call the refactored processor
async for update_type, data in processor.process_transcript(client, audio_file_obj):
updates_to_yield = {}
if update_type == "status":
updates_to_yield[output_status] = gr.update(value=f"β³ {data}")
elif update_type == "progress":
key, result = data
component_to_update = results_component_map.get(key)
if component_to_update:
ui_result = ""
if isinstance(result, str) and result.startswith("ERROR_"):
# Handle specific rate limit error display
if result.startswith("ERROR_RATE_LIMIT"):
ui_result = f"β Error (Rate Limit):\n{result.split(':', 1)[-1].strip()}"
else:
try:
error_type, error_detail = result.split(':', 1)
error_type_display = error_type.replace('ERROR_', '').replace('_', ' ').title()
ui_result = f"β Error ({error_type_display}):\n{error_detail.strip()}"
except ValueError:
ui_result = f"β Error:\n{result}"
else:
ui_result = str(result)
updates_to_yield[component_to_update] = gr.update(value=ui_result)
else:
print(f"Warning: No UI component mapped for result key '{key}'")
elif update_type == "error":
error_message = f"π Processing Error: {data}"
updates_to_yield[output_status] = gr.update(value=error_message)
yield updates_to_yield
return
if updates_to_yield:
yield updates_to_yield
final_success_update = {output_status: gr.update(value="β
Processing Complete.")}
final_success_update.update(updates_to_yield) # Include any final progress updates
yield final_success_update
print("Process wrapper finished successfully.")
except Exception as e:
print(f"Error in process_wrapper async loop: {traceback.format_exc()}")
error_msg = f"π Unexpected wrapper error: {e}"
yield {output_status: gr.update(value=error_msg)}
submit_btn.click(
fn=process_wrapper,
inputs=[google_api_key_input, input_audio],
outputs=outputs_list
)
with gr.Tab("Customize Prompts"):
# (Customize Prompts tab UI remains unchanged)
gr.Markdown("## Customize Generation Prompts")
prompt_inputs = []
default_prompts = processor.generator.current_prompts
for key in PROMPT_KEYS:
display_name = PROMPT_DISPLAY_NAMES.get(key, key.replace('_', ' ').title())
default_value = default_prompts.get(key, "")
prompt_inputs.append(gr.Textbox(label=f"{display_name} Prompt", lines=10, value=default_value or ""))
status_prompt_tab = gr.Textbox(label="Status", interactive=False)
update_btn = gr.Button("Update Session Prompts")
update_btn.click(fn=processor.update_prompts, inputs=prompt_inputs, outputs=[status_prompt_tab])
reset_btn = gr.Button("Reset to Default Prompts")
def reset_prompts_ui():
try:
defaults = processor.generator._load_default_prompts()
if any(isinstance(v, str) and v.startswith("ERROR:") for v in defaults.values()): raise ValueError("Failed to load one or more default prompts.")
processor.generator.current_prompts = defaults
updates = {status_prompt_tab: gr.update(value="Prompts reset to defaults!")}
for i, key in enumerate(PROMPT_KEYS):
updates[prompt_inputs[i]] = gr.update(value=defaults.get(key, ""))
return updates
except Exception as e:
print(f"Error during prompt reset: {e}")
return {status_prompt_tab: gr.update(value=f"Error resetting prompts: {str(e)}")}
reset_btn.click(
fn=reset_prompts_ui,
inputs=None,
outputs=[status_prompt_tab] + prompt_inputs
)
return app
# --- Main Execution Block (Unchanged) ---
if __name__ == "__main__":
if AudioSegment is None:
print("\nFATAL ERROR: pydub is required but could not be imported.")
print("Please install it ('pip install pydub') and ensure ffmpeg is available.")
print("Application cannot start correctly.")
exit(1)
Path("prompts").mkdir(exist_ok=True)
Path("data").mkdir(exist_ok=True)
_prompt_dir = Path("prompts")
for key in PROMPT_KEYS:
prompt_file = _prompt_dir / f"{key}.txt"
if not prompt_file.exists():
# Ensure default prompts advise against markdown
default_content = f"This is the default placeholder prompt for {PROMPT_DISPLAY_NAMES[key]}. Process the transcript provided. Important: Generate the response as plain text only. Do not use any Markdown formatting (no '#', '*', '_', list formatting, bolding, etc.)."
if key == "titles_and_thumbnails": default_content += "\n\nExamples:\n{title_examples}"
elif key == "description": default_content += "\n\nExamples:\n{description_examples}"
elif key == "clips": default_content += "\n\nExamples:\n{clip_examples}"
elif key == "timestamps": default_content += "\n\nExamples:\n{timestamps_examples}"
prompt_file.write_text(default_content, encoding='utf-8')
print(f"Created dummy prompt file: {prompt_file}")
print("Starting Gradio application...")
app = create_interface()
app.launch()
print("Gradio application stopped.") |