Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import altair as alt
|
3 |
+
import plotly.express as px
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
from datetime import datetime
|
7 |
+
from transformers import pipeline
|
8 |
+
|
9 |
+
# Loading pre-trained emotion classifier pipeline
|
10 |
+
emotion_classifier = pipeline("text-classification", model="j-hartmann/emotion-english-roberta-large", top_k=None)
|
11 |
+
|
12 |
+
from track_utils import create_page_visited_table, add_page_visited_details, view_all_page_visited_details, add_prediction_details, view_all_prediction_details, create_emotionclf_table
|
13 |
+
|
14 |
+
def predict_emotions(docx):
|
15 |
+
results = emotion_classifier(docx)
|
16 |
+
results_sorted = sorted(results[0], key=lambda x: x['score'], reverse=True)
|
17 |
+
return results_sorted[0]['label']
|
18 |
+
|
19 |
+
def get_prediction_proba(docx):
|
20 |
+
results = emotion_classifier(docx)
|
21 |
+
return {result['label']: result['score'] for result in results[0]}
|
22 |
+
|
23 |
+
|
24 |
+
def set_bg_hack_url():
|
25 |
+
'''
|
26 |
+
A function to unpack an image from url and set as bg.
|
27 |
+
Returns
|
28 |
+
-------
|
29 |
+
The background.
|
30 |
+
'''
|
31 |
+
|
32 |
+
st.markdown(
|
33 |
+
f"""
|
34 |
+
<style>
|
35 |
+
.stApp {{
|
36 |
+
background: url("https://png.pngtree.com/background/20210709/original/pngtree-simple-technology-business-line-picture-image_938206.jpg");
|
37 |
+
background-size: cover;
|
38 |
+
}}
|
39 |
+
/* General body styling */
|
40 |
+
body {{
|
41 |
+
font-family: 'Arial', sans-serif;
|
42 |
+
}}
|
43 |
+
/* Sidebar styling */
|
44 |
+
[data-testid="stSidebar"] {{
|
45 |
+
background: linear-gradient(180deg, #52079A, #062879); /* Gradient from dark blue to orange */
|
46 |
+
color: white;
|
47 |
+
}}
|
48 |
+
[data-testid="stSidebar"] .css-1d391kg {{
|
49 |
+
color: white;
|
50 |
+
}}
|
51 |
+
/* Title and headers */
|
52 |
+
h1, h2, h3 {{
|
53 |
+
color: #FFFFFF; /* White */
|
54 |
+
}}
|
55 |
+
/* Custom button style */
|
56 |
+
.stButton button {{
|
57 |
+
background-color: #004080; /* Dark Blue */
|
58 |
+
color: white;
|
59 |
+
border-radius: 8px;
|
60 |
+
border: none;
|
61 |
+
font-size: 16px;
|
62 |
+
padding: 10px 20px;
|
63 |
+
cursor: pointer;
|
64 |
+
}}
|
65 |
+
.stButton button:hover {{
|
66 |
+
background-color: #FFA500; /* Orange */
|
67 |
+
}}
|
68 |
+
/* DataFrame styling */
|
69 |
+
.css-17z80pu {{
|
70 |
+
background-color: #d3d3d3; /* Grey */
|
71 |
+
border: 1px solid #ddd;
|
72 |
+
border-radius: 4px;
|
73 |
+
padding: 10px;
|
74 |
+
}}
|
75 |
+
/* Custom chart area */
|
76 |
+
.stAltairChart {{
|
77 |
+
background-color: #d3d3d3; /* Grey */
|
78 |
+
border: 1px solid #ddd;
|
79 |
+
border-radius: 5px;
|
80 |
+
padding: 10px;
|
81 |
+
}}
|
82 |
+
/* Text area styling */
|
83 |
+
.css-91z34k {{
|
84 |
+
background-color: #e0e0e0; /* Light Grey for Text Area Box */
|
85 |
+
border: 1px solid #ddd;
|
86 |
+
border-radius: 4px;
|
87 |
+
padding: 10px;
|
88 |
+
}}
|
89 |
+
/* Top bar styling */
|
90 |
+
header[data-testid="stHeader"] {{
|
91 |
+
background: rgba(0, 0, 0, 0); /* Transparent */
|
92 |
+
}}
|
93 |
+
</style>
|
94 |
+
""",
|
95 |
+
unsafe_allow_html=True
|
96 |
+
)
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
emotions_emoji_dict = {"anger":"๐ ","disgust":"๐คฎ", "fear":"๐จ๐ฑ", "happiness":"๐ค", "joy":"๐", "neutral":"๐", "sadness":"๐", "surprise":"๐ฎ"}
|
101 |
+
|
102 |
+
def main():
|
103 |
+
st.set_page_config(page_title="Emotion Classifier App: Veer", layout="wide")
|
104 |
+
set_bg_hack_url()
|
105 |
+
|
106 |
+
st.sidebar.title("Menu")
|
107 |
+
menu = ["๐ Home", "๐ Monitor", "โน๏ธ About"]
|
108 |
+
choice = st.sidebar.selectbox("Select an Option", menu)
|
109 |
+
|
110 |
+
|
111 |
+
create_page_visited_table()
|
112 |
+
create_emotionclf_table()
|
113 |
+
|
114 |
+
if choice == "๐ Home":
|
115 |
+
add_page_visited_details("Home", datetime.now())
|
116 |
+
st.title("Emotion Classifier App")
|
117 |
+
st.subheader("Enter text to analyze its emotion")
|
118 |
+
|
119 |
+
with st.form(key='emotion_clf_form'):
|
120 |
+
raw_text = st.text_area("Type Here")
|
121 |
+
submit_text = st.form_submit_button(label='Submit')
|
122 |
+
|
123 |
+
if submit_text:
|
124 |
+
prediction = predict_emotions(raw_text)
|
125 |
+
probability = get_prediction_proba(raw_text)
|
126 |
+
|
127 |
+
add_prediction_details(raw_text, prediction, max(probability.values()), datetime.now())
|
128 |
+
|
129 |
+
col1, col2 = st.columns(2)
|
130 |
+
|
131 |
+
with col1:
|
132 |
+
st.success("Input Text")
|
133 |
+
st.write(raw_text)
|
134 |
+
|
135 |
+
st.success("Sentiment Prediction")
|
136 |
+
emoji_icon = emotions_emoji_dict[prediction]
|
137 |
+
st.write(f"{prediction}: {emoji_icon}")
|
138 |
+
st.write(f"Confidence: {max(probability.values()):.2f}")
|
139 |
+
|
140 |
+
with col2:
|
141 |
+
st.success("Prediction Probability")
|
142 |
+
proba_df = pd.DataFrame(list(probability.items()), columns=["emotions", "probability"])
|
143 |
+
|
144 |
+
fig = alt.Chart(proba_df).mark_bar().encode(x='emotions', y='probability', color='emotions')
|
145 |
+
st.altair_chart(fig, use_container_width=True)
|
146 |
+
|
147 |
+
elif choice == "๐ Monitor":
|
148 |
+
add_page_visited_details("Monitor", datetime.now())
|
149 |
+
st.title("App Monitoring")
|
150 |
+
|
151 |
+
with st.expander("Page Metrics"):
|
152 |
+
page_visited_details = pd.DataFrame(view_all_page_visited_details(), columns=['Pagename','Time_of_Visit'])
|
153 |
+
st.dataframe(page_visited_details)
|
154 |
+
|
155 |
+
pg_count = page_visited_details['Pagename'].value_counts().rename_axis('Pagename').reset_index(name='Counts')
|
156 |
+
c = alt.Chart(pg_count).mark_bar().encode(x='Pagename', y='Counts', color='Pagename')
|
157 |
+
st.altair_chart(c, use_container_width=True)
|
158 |
+
|
159 |
+
p = px.pie(pg_count, values='Counts', names='Pagename')
|
160 |
+
st.plotly_chart(p, use_container_width=True)
|
161 |
+
|
162 |
+
with st.expander('Emotion Classifier Metrics'): #initially showed Unicode decode error: utf-8 codec cant decode byte; fix:
|
163 |
+
try:
|
164 |
+
prediction_details = view_all_prediction_details()
|
165 |
+
df_emotions = pd.DataFrame(prediction_details, columns=['Rawtext','Prediction','Probability','Time_of_Visit'])
|
166 |
+
|
167 |
+
# fix for unicodedecodeerror: Ensuring all columns are converted to strings to avoid decoding errors.
|
168 |
+
df_emotions = df_emotions.applymap(lambda x: x.decode('utf-8', 'ignore') if isinstance(x, bytes) else str(x))
|
169 |
+
st.dataframe(df_emotions)
|
170 |
+
|
171 |
+
prediction_count = df_emotions['Prediction'].value_counts().rename_axis('Prediction').reset_index(name='Counts')
|
172 |
+
pc = alt.Chart(prediction_count).mark_bar().encode(x='Prediction', y='Counts', color='Prediction')
|
173 |
+
st.altair_chart(pc, use_container_width=True)
|
174 |
+
except UnicodeDecodeError as e:
|
175 |
+
st.error(f"Error decoding data: {e}")
|
176 |
+
|
177 |
+
else:
|
178 |
+
st.title("About")
|
179 |
+
add_page_visited_details("About", datetime.now())
|
180 |
+
st.subheader("Emotion Classifier App")
|
181 |
+
st.text("A simple application to classify emotions from text.")
|
182 |
+
|
183 |
+
if __name__ == '__main__':
|
184 |
+
main()
|