File size: 5,025 Bytes
dbf7be3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08dc526
dbf7be3
 
 
08dc526
dbf7be3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Copyright (c) Microsoft Corporation. 
# Licensed under the MIT license.

import os
from .parser_DFG import DFG_python,DFG_java,DFG_ruby,DFG_go,DFG_php,DFG_javascript,DFG_csharp
from .parser_utils import (remove_comments_and_docstrings,
                   tree_to_token_index,
                   index_to_code_token,
                   tree_to_variable_index)
from tree_sitter import Language, Parser
import pdb

dfg_function={
    'python':DFG_python,
    'java':DFG_java,
    'ruby':DFG_ruby,
    'go':DFG_go,
    'php':DFG_php,
    'javascript':DFG_javascript,
    'c_sharp':DFG_csharp,
}

def calc_dataflow_match(references, candidate, lang):
    return corpus_dataflow_match([references], [candidate], lang)

def corpus_dataflow_match(references, candidates, lang, langso_dir):   
    LANGUAGE = Language(langso_dir, lang)
    parser = Parser()
    parser.set_language(LANGUAGE)
    parser = [parser,dfg_function[lang]]
    match_count = 0
    total_count = 0

    for i in range(len(candidates)):
        references_sample = references[i]
        candidate = candidates[i] 
        for reference in references_sample:
            try:
                candidate=remove_comments_and_docstrings(candidate,lang)
            except:
                pass    
            try:
                reference=remove_comments_and_docstrings(reference,lang)
            except:
                pass  

            cand_dfg = get_data_flow(candidate, parser)
            ref_dfg = get_data_flow(reference, parser)
            
            normalized_cand_dfg = normalize_dataflow(cand_dfg)
            normalized_ref_dfg = normalize_dataflow(ref_dfg)

            if len(normalized_ref_dfg) > 0:
                total_count += len(normalized_ref_dfg)
                for dataflow in normalized_ref_dfg:
                    if dataflow in normalized_cand_dfg:
                            match_count += 1
                            normalized_cand_dfg.remove(dataflow)  
    if total_count == 0:
        # print("WARNING: There is no reference data-flows extracted from the whole corpus, and the data-flow match score degenerates to 0. Please consider ignoring this score.")
        # return 0
        print("WARNING: There is no reference data-flows extracted from the whole corpus, and the data-flow match score degenerates to None")
        return None       
    score = match_count / total_count
    return score

def get_data_flow(code, parser):
    try:
        tree = parser[0].parse(bytes(code,'utf8'))    
        root_node = tree.root_node  
        tokens_index=tree_to_token_index(root_node)     
        code=code.split('\n')
        code_tokens=[index_to_code_token(x,code) for x in tokens_index]  
        index_to_code={}
        for idx,(index,code) in enumerate(zip(tokens_index,code_tokens)):
            index_to_code[index]=(idx,code)  
        try:
            DFG,_=parser[1](root_node,index_to_code,{}) 
        except:
            DFG=[]
        DFG=sorted(DFG,key=lambda x:x[1])
        indexs=set()
        for d in DFG:
            if len(d[-1])!=0:
                indexs.add(d[1])
            for x in d[-1]:
                indexs.add(x)
        new_DFG=[]
        for d in DFG:
            if d[1] in indexs:
                new_DFG.append(d)
        codes=code_tokens
        dfg=new_DFG
    except:
        codes=code.split()
        dfg=[]
    #merge nodes
    dic={}
    for d in dfg:
        if d[1] not in dic:
            dic[d[1]]=d
        else:
            dic[d[1]]=(d[0],d[1],d[2],list(set(dic[d[1]][3]+d[3])),list(set(dic[d[1]][4]+d[4])))
    DFG=[]
    for d in dic:
        DFG.append(dic[d])
    dfg=DFG
    return dfg

def normalize_dataflow_item(dataflow_item):
    var_name = dataflow_item[0]
    var_pos = dataflow_item[1]
    relationship = dataflow_item[2]
    par_vars_name_list = dataflow_item[3]
    par_vars_pos_list = dataflow_item[4]

    var_names = list(set(par_vars_name_list+[var_name]))
    norm_names = {}
    for i in range(len(var_names)):
        norm_names[var_names[i]] = 'var_'+str(i)

    norm_var_name = norm_names[var_name]
    relationship = dataflow_item[2]
    norm_par_vars_name_list = [norm_names[x] for x in par_vars_name_list]

    return (norm_var_name, relationship, norm_par_vars_name_list)

def normalize_dataflow(dataflow):
    var_dict = {}
    i = 0
    normalized_dataflow = []
    for item in dataflow:
        var_name = item[0]
        relationship = item[2]
        par_vars_name_list = item[3]
        for name in par_vars_name_list:
            if name not in var_dict:
                var_dict[name] = 'var_'+str(i)
                i += 1
        if var_name not in var_dict:
            var_dict[var_name] = 'var_'+str(i)
            i+= 1
        normalized_dataflow.append((var_dict[var_name], relationship, [var_dict[x] for x in par_vars_name_list]))
    return normalized_dataflow