Spaces:
Runtime error
Runtime error
File size: 4,889 Bytes
dbf7be3 9aeec98 dbf7be3 ea09ebe dbf7be3 ea09ebe dbf7be3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""CodeBLEU metric."""
import evaluate
import datasets
#these were added to fix evaluate load of dependencies
from .bleu import corpus_bleu
from .utils import pad_sequence
from .weighted_ngram_match import ngrams
from .syntax_match import calc_syntax_match
from .parser_DFG import DFG_python
from .parser_utils import tree_to_token_index
from .dataflow_match import calc_dataflow_match
from .my_codebleu import calc_codebleu
# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {CodeBLEU: A Metric for Evaluating Code Generation},
authors={Sedykh, Ivan},
year={2022}
}
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is an adaptation of the original CodeBLEU metric from CodexGLUE benchmark
for evaluating code generation.
"""
# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of predictions to score. Each predictions
should be a string with tokens separated by spaces.
references: list of lists of references. Each list
should contain len(predictions) items.
lang: programming language in ['java','js','c_sharp','php','go','python','ruby']
tokenizer: tokenizer function str -> List[str], Defaults to lambda s: s.split()
params: str, weights for averaging(see CodeBLEU paper).
Defaults to equal weights "0.25,0.25,0.25,0.25".
Returns:
CodeBLEU: resulting score,
ngram_match_score: See paper CodeBLEU,
weighted_ngram_match_score: See paper CodeBLEU,
syntax_match_score: See paper CodeBLEU,
dataflow_match_score: See paper CodeBLEU,
Examples:
>>> codebleu = evaluate.load("my_new_module")
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
>>> print(results)
{'accuracy': 1.0}
"""
# TODO: Define external resources urls if needed
# BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class codebleu(evaluate.Metric):
"""CodeBLEU metric from CodexGLUE"""
def _info(self):
return evaluate.MetricInfo(
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=[
# datasets.Features(
# {
# "predictions": datasets.Value("string", id="sequence"),
# "references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"),
# }
# ),
datasets.Features(
{
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Value("string", id="sequence"),
}
),
],
reference_urls=[
"https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans/evaluator",
"https://arxiv.org/abs/2009.10297",
],
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
# TODO: Download external resources if needed
# source CodeBLEU/parser/build.sh
# print(dl_manager)
self.kw_dir = dl_manager.download_and_extract("https://huggingface.co/spaces/dvitel/codebleu/resolve/main/keywords.tar.gz")
print("Downloaded keywords to", self.kw_dir)
self.langso_dir = dl_manager.download("https://huggingface.co/spaces/dvitel/codebleu/resolve/main/my-languages.so")
print("Downloaded languages.so to", self.langso_dir)
def _compute(self, predictions, references, lang = "python", tokenizer=None, params="0.25,0.25,0.25,0.25"):
"""Returns the scores"""
res = calc_codebleu(
predictions=predictions,
references=references,
lang=lang,
tokenizer=tokenizer,
params=params,
kw_dir = self.kw_dir,
langso_dir = self.langso_dir
)
return res
|