File size: 36,602 Bytes
7ef93e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
import re
import math
import numpy as np
import torch
from diffusers import DiffusionPipeline
from typing import Any, Callable, Dict, List, Optional, Union
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from diffusers.utils import (
	USE_PEFT_BACKEND,
    deprecate,
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
from .prompt_parser import FrozenCLIPEmbedderWithCustomWords



re_attention = re.compile(
    r"""

\\\(|

\\\)|

\\\[|

\\]|

\\\\|

\\|

\(|

\[|

:([+-]?[.\d]+)\)|

\)|

]|

[^\\()\[\]:]+|

:

""",
    re.X,
)


def parse_prompt_attention(text):
    """

    Parses a string with attention tokens and returns a list of pairs: text and its associated weight.

    Accepted tokens are:

      (abc) - increases attention to abc by a multiplier of 1.1

      (abc:3.12) - increases attention to abc by a multiplier of 3.12

      [abc] - decreases attention to abc by a multiplier of 1.1

      \\( - literal character '('

      \\[ - literal character '['

      \\) - literal character ')'

      \\] - literal character ']'

      \\ - literal character '\'

      anything else - just text

    >>> parse_prompt_attention('normal text')

    [['normal text', 1.0]]

    >>> parse_prompt_attention('an (important) word')

    [['an ', 1.0], ['important', 1.1], [' word', 1.0]]

    >>> parse_prompt_attention('(unbalanced')

    [['unbalanced', 1.1]]

    >>> parse_prompt_attention('\\(literal\\]')

    [['(literal]', 1.0]]

    >>> parse_prompt_attention('(unnecessary)(parens)')

    [['unnecessaryparens', 1.1]]

    >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')

    [['a ', 1.0],

     ['house', 1.5730000000000004],

     [' ', 1.1],

     ['on', 1.0],

     [' a ', 1.1],

     ['hill', 0.55],

     [', sun, ', 1.1],

     ['sky', 1.4641000000000006],

     ['.', 1.1]]

    """

    res = []
    round_brackets = []
    square_brackets = []

    round_bracket_multiplier = 1.1
    square_bracket_multiplier = 1 / 1.1

    def multiply_range(start_position, multiplier):
        for p in range(start_position, len(res)):
            res[p][1] *= multiplier

    for m in re_attention.finditer(text):
        text = m.group(0)
        weight = m.group(1)

        if text.startswith("\\"):
            res.append([text[1:], 1.0])
        elif text == "(":
            round_brackets.append(len(res))
        elif text == "[":
            square_brackets.append(len(res))
        elif weight is not None and len(round_brackets) > 0:
            multiply_range(round_brackets.pop(), float(weight))
        elif text == ")" and len(round_brackets) > 0:
            multiply_range(round_brackets.pop(), round_bracket_multiplier)
        elif text == "]" and len(square_brackets) > 0:
            multiply_range(square_brackets.pop(), square_bracket_multiplier)
        else:
            res.append([text, 1.0])

    for pos in round_brackets:
        multiply_range(pos, round_bracket_multiplier)

    for pos in square_brackets:
        multiply_range(pos, square_bracket_multiplier)

    if len(res) == 0:
        res = [["", 1.0]]

    # merge runs of identical weights
    i = 0
    while i + 1 < len(res):
        if res[i][1] == res[i + 1][1]:
            res[i][0] += res[i + 1][0]
            res.pop(i + 1)
        else:
            i += 1

    return res


def get_prompts_with_weights(pipe: DiffusionPipeline, prompt: List[str], max_length: int):
    r"""

    Tokenize a list of prompts and return its tokens with weights of each token.



    No padding, starting or ending token is included.

    """
    tokens = []
    weights = []
    truncated = False
    for text in prompt:
        texts_and_weights = parse_prompt_attention(text)
        text_token = []
        text_weight = []
        for word, weight in texts_and_weights:
            # tokenize and discard the starting and the ending token
            token = pipe.tokenizer(word).input_ids[1:-1]
            text_token += token
            # copy the weight by length of token
            text_weight += [weight] * len(token)
            # stop if the text is too long (longer than truncation limit)
            if len(text_token) > max_length:
                truncated = True
                break
        # truncate
        if len(text_token) > max_length:
            truncated = True
            text_token = text_token[:max_length]
            text_weight = text_weight[:max_length]
        tokens.append(text_token)
        weights.append(text_weight)
    if truncated:
        logger.warning("Prompt was truncated. Try to shorten the prompt or increase max_embeddings_multiples")
    return tokens, weights


def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, pad, no_boseos_middle=True, chunk_length=77):
    r"""

    Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length.

    """
    max_embeddings_multiples = (max_length - 2) // (chunk_length - 2)
    weights_length = max_length if no_boseos_middle else max_embeddings_multiples * chunk_length
    for i in range(len(tokens)):
        tokens[i] = [bos] + tokens[i] + [pad] * (max_length - 1 - len(tokens[i]) - 1) + [eos]
        if no_boseos_middle:
            weights[i] = [1.0] + weights[i] + [1.0] * (max_length - 1 - len(weights[i]))
        else:
            w = []
            if len(weights[i]) == 0:
                w = [1.0] * weights_length
            else:
                for j in range(max_embeddings_multiples):
                    w.append(1.0)  # weight for starting token in this chunk
                    w += weights[i][j * (chunk_length - 2) : min(len(weights[i]), (j + 1) * (chunk_length - 2))]
                    w.append(1.0)  # weight for ending token in this chunk
                w += [1.0] * (weights_length - len(w))
            weights[i] = w[:]

    return tokens, weights

def clip_skip_prompt(

	pipe,

	text_input,

	clip_skip =  None,

):
    if hasattr(pipe.text_encoder.config, "use_attention_mask") and pipe.text_encoder.config.use_attention_mask:
        attention_mask = text_inputs.attention_mask.to(device)
    else:
        attention_mask = None
    if clip_skip is not None and  clip_skip > 1:
        text_embedding = pipe.text_encoder(text_input, attention_mask=attention_mask, output_hidden_states=True)
    	# Access the `hidden_states` first, that contains a tuple of
        # all the hidden states from the encoder layers. Then index into
        # the tuple to access the hidden states from the desired layer.
        text_embedding = text_embedding[-1][-clip_skip]
        # We also need to apply the final LayerNorm here to not mess with the
        # representations. The `last_hidden_states` that we typically use for
        # obtaining the final prompt representations passes through the LayerNorm
        # layer.
        text_embedding = pipe.text_encoder.text_model.final_layer_norm(text_embedding)
    else:
        text_embedding = pipe.text_encoder(text_input, attention_mask=attention_mask)
        text_embedding = text_embedding[0]

    return text_embedding

def get_unweighted_text_embeddings(

    pipe: DiffusionPipeline,

    text_input: torch.Tensor,

    chunk_length: int,

    no_boseos_middle: Optional[bool] = True,

    clip_skip : Optional[int] = None,

):
    """

    When the length of tokens is a multiple of the capacity of the text encoder,

    it should be split into chunks and sent to the text encoder individually.

    """
    max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2)
    if max_embeddings_multiples > 1:
        text_embeddings = []
        for i in range(max_embeddings_multiples):
            # extract the i-th chunk
            text_input_chunk = text_input[:, i * (chunk_length - 2) : (i + 1) * (chunk_length - 2) + 2].clone()

            # cover the head and the tail by the starting and the ending tokens
            text_input_chunk[:, 0] = text_input[0, 0]
            text_input_chunk[:, -1] = text_input[0, -1]

            text_embedding = clip_skip_prompt(pipe,text_input_chunk,clip_skip)

            if no_boseos_middle:
                if i == 0:
                    # discard the ending token
                    text_embedding = text_embedding[:, :-1]
                elif i == max_embeddings_multiples - 1:
                    # discard the starting token
                    text_embedding = text_embedding[:, 1:]
                else:
                    # discard both starting and ending tokens
                    text_embedding = text_embedding[:, 1:-1]

            text_embeddings.append(text_embedding)
        text_embeddings = torch.concat(text_embeddings, axis=1)
    else:
    	text_embeddings = clip_skip_prompt(pipe,text_input,clip_skip)
    return text_embeddings


def get_weighted_text_embeddings(

    pipe: DiffusionPipeline,

    prompt: Union[str, List[str]],

    uncond_prompt: Optional[Union[str, List[str]]] = None,

    max_embeddings_multiples: Optional[int] = 3,

    no_boseos_middle: Optional[bool] = False,

    skip_parsing: Optional[bool] = False,

    skip_weighting: Optional[bool] = False,

    clip_skip : Optional[int] = None,

):
    r"""

    Prompts can be assigned with local weights using brackets. For example,

    prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful',

    and the embedding tokens corresponding to the words get multiplied by a constant, 1.1.



    Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean.



    Args:

        pipe (`DiffusionPipeline`):

            Pipe to provide access to the tokenizer and the text encoder.

        prompt (`str` or `List[str]`):

            The prompt or prompts to guide the image generation.

        uncond_prompt (`str` or `List[str]`):

            The unconditional prompt or prompts for guide the image generation. If unconditional prompt

            is provided, the embeddings of prompt and uncond_prompt are concatenated.

        max_embeddings_multiples (`int`, *optional*, defaults to `3`):

            The max multiple length of prompt embeddings compared to the max output length of text encoder.

        no_boseos_middle (`bool`, *optional*, defaults to `False`):

            If the length of text token is multiples of the capacity of text encoder, whether reserve the starting and

            ending token in each of the chunk in the middle.

        skip_parsing (`bool`, *optional*, defaults to `False`):

            Skip the parsing of brackets.

        skip_weighting (`bool`, *optional*, defaults to `False`):

            Skip the weighting. When the parsing is skipped, it is forced True.

    """
    max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2
    prompt_tokens_id = None
    negative_prompt_tokens_id = None
    if isinstance(prompt, str):
        prompt = [prompt]

    if not skip_parsing:
        prompt_tokens, prompt_weights = get_prompts_with_weights(pipe, prompt, max_length - 2)
        if uncond_prompt is not None:
            if isinstance(uncond_prompt, str):
                uncond_prompt = [uncond_prompt]
            uncond_tokens, uncond_weights = get_prompts_with_weights(pipe, uncond_prompt, max_length - 2)
    else:
        prompt_tokens = [
            token[1:-1] for token in pipe.tokenizer(prompt, max_length=max_length, truncation=True).input_ids
        ]
        prompt_weights = [[1.0] * len(token) for token in prompt_tokens]
        if uncond_prompt is not None:
            if isinstance(uncond_prompt, str):
                uncond_prompt = [uncond_prompt]
            uncond_tokens = [
                token[1:-1]
                for token in pipe.tokenizer(uncond_prompt, max_length=max_length, truncation=True).input_ids
            ]
            uncond_weights = [[1.0] * len(token) for token in uncond_tokens]

    # round up the longest length of tokens to a multiple of (model_max_length - 2)
    max_length = max([len(token) for token in prompt_tokens])
    if uncond_prompt is not None:
        max_length = max(max_length, max([len(token) for token in uncond_tokens]))

    max_embeddings_multiples = min(
        max_embeddings_multiples,
        (max_length - 1) // (pipe.tokenizer.model_max_length - 2) + 1,
    )
    max_embeddings_multiples = max(1, max_embeddings_multiples)
    max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2

    # pad the length of tokens and weights
    bos = pipe.tokenizer.bos_token_id
    eos = pipe.tokenizer.eos_token_id
    pad = getattr(pipe.tokenizer, "pad_token_id", eos)
    prompt_tokens, prompt_weights = pad_tokens_and_weights(
        prompt_tokens,
        prompt_weights,
        max_length,
        bos,
        eos,
        pad,
        no_boseos_middle=no_boseos_middle,
        chunk_length=pipe.tokenizer.model_max_length,
    )

    prompt_tokens_id = np.array(prompt_tokens, dtype=np.int64)
    prompt_tokens = torch.tensor(prompt_tokens, dtype=torch.long, device=pipe.device)
    if uncond_prompt is not None:
        uncond_tokens, uncond_weights = pad_tokens_and_weights(
            uncond_tokens,
            uncond_weights,
            max_length,
            bos,
            eos,
            pad,
            no_boseos_middle=no_boseos_middle,
            chunk_length=pipe.tokenizer.model_max_length,
        )
        negative_prompt_tokens_id = np.array(uncond_tokens, dtype=np.int64)
        uncond_tokens = torch.tensor(uncond_tokens, dtype=torch.long, device=pipe.device)

    # get the embeddings
    text_embeddings = get_unweighted_text_embeddings(
        pipe,
        prompt_tokens,
        pipe.tokenizer.model_max_length,
        no_boseos_middle=no_boseos_middle,
        clip_skip = clip_skip,
    )
    prompt_weights = torch.tensor(prompt_weights, dtype=text_embeddings.dtype, device=text_embeddings.device)
    if uncond_prompt is not None:
        uncond_embeddings = get_unweighted_text_embeddings(
            pipe,
            uncond_tokens,
            pipe.tokenizer.model_max_length,
            no_boseos_middle=no_boseos_middle,
            clip_skip = clip_skip,
        )
        uncond_weights = torch.tensor(uncond_weights, dtype=uncond_embeddings.dtype, device=uncond_embeddings.device)

    # assign weights to the prompts and normalize in the sense of mean
    # TODO: should we normalize by chunk or in a whole (current implementation)?
    if (not skip_parsing) and (not skip_weighting):
        previous_mean = text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype)
        text_embeddings *= prompt_weights.unsqueeze(-1)
        current_mean = text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype)
        text_embeddings *= (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1)
        if uncond_prompt is not None:
            previous_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to(uncond_embeddings.dtype)
            uncond_embeddings *= uncond_weights.unsqueeze(-1)
            current_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to(uncond_embeddings.dtype)
            uncond_embeddings *= (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1)

    if uncond_prompt is not None:
        return text_embeddings, uncond_embeddings, negative_prompt_tokens_id, prompt_tokens_id
    return text_embeddings, None, None, prompt_tokens_id


def encoder_long_prompt(

    pipe,

    prompt,

    device,

    num_images_per_prompt,

    do_classifier_free_guidance,

    negative_prompt=None,

    prompt_embeds: Optional[torch.Tensor] = None,

    negative_prompt_embeds: Optional[torch.Tensor] = None,

    lora_scale: Optional[float] = None,

    clip_skip : Optional[int] = None,

    max_embeddings_multiples: Optional[int] = 3,

):
    r"""

    Encodes the prompt into text encoder hidden states.



    Args:

        prompt (`str` or `list(int)`):

            prompt to be encoded

        device: (`torch.device`):

            torch device

        num_images_per_prompt (`int`):

            number of images that should be generated per prompt

        do_classifier_free_guidance (`bool`):

            whether to use classifier free guidance or not

        negative_prompt (`str` or `List[str]`):

            The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored

            if `guidance_scale` is less than `1`).

        max_embeddings_multiples (`int`, *optional*, defaults to `3`):

            The max multiple length of prompt embeddings compared to the max output length of text encoder.

    """

    # set lora scale so that monkey patched LoRA
    # function of text encoder can correctly access it
    if lora_scale is not None and isinstance(pipe, LoraLoaderMixin):
        pipe._lora_scale = lora_scale
        # dynamically adjust the LoRA scale
        if not USE_PEFT_BACKEND:
            adjust_lora_scale_text_encoder(pipe.text_encoder, lora_scale)
        else:
            scale_lora_layers(pipe.text_encoder, lora_scale)
    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    negative_prompt_tokens_id, prompt_tokens_id = None, None
    if negative_prompt_embeds is None:
        if negative_prompt is None:
            negative_prompt = [""] * batch_size
        elif isinstance(negative_prompt, str):
            negative_prompt = [negative_prompt] * batch_size
        if batch_size != len(negative_prompt):
            raise ValueError(
                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                " the batch size of `prompt`."
            )
    if prompt_embeds is None or negative_prompt_embeds is None:
        if isinstance(pipe, TextualInversionLoaderMixin):
            prompt = pipe.maybe_convert_prompt(prompt, pipe.tokenizer)
            if do_classifier_free_guidance and negative_prompt_embeds is None:
                negative_prompt = pipe.maybe_convert_prompt(negative_prompt, pipe.tokenizer)

        prompt_embeds1, negative_prompt_embeds1, negative_prompt_tokens_id, prompt_tokens_id = get_weighted_text_embeddings(
            pipe=pipe,
            prompt=prompt,
            uncond_prompt=negative_prompt if do_classifier_free_guidance else None,
            max_embeddings_multiples=int(max_embeddings_multiples),
            clip_skip = clip_skip,
        )
        if prompt_embeds is None:
            prompt_embeds = prompt_embeds1
        if negative_prompt_embeds is None:
            negative_prompt_embeds = negative_prompt_embeds1

    bs_embed, seq_len, _ = prompt_embeds.shape
    # duplicate text embeddings for each generation per prompt, using mps friendly method
    prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
    prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

    if do_classifier_free_guidance:
        bs_embed, seq_len, _ = negative_prompt_embeds.shape
        negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
        negative_prompt_embeds = negative_prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

    if isinstance(pipe, LoraLoaderMixin) and USE_PEFT_BACKEND:
        # Retrieve the original scale by scaling back the LoRA layers
        unscale_lora_layers(pipe.text_encoder, lora_scale)

    return  prompt_embeds, negative_prompt_embeds, [negative_prompt_tokens_id, prompt_tokens_id]




def encode_short_prompt(

    pipe,

    prompt,

    device,

    num_images_per_prompt,

    do_classifier_free_guidance,

    negative_prompt=None,

    prompt_embeds: Optional[torch.Tensor] = None,

    negative_prompt_embeds: Optional[torch.Tensor] = None,

    lora_scale: Optional[float] = None,

    clip_skip: Optional[int] = None,

):
    r"""

    Encodes the prompt into text encoder hidden states.



    Args:

        prompt (`str` or `List[str]`, *optional*):

            prompt to be encoded

        device: (`torch.device`):

            torch device

        num_images_per_prompt (`int`):

            number of images that should be generated per prompt

        do_classifier_free_guidance (`bool`):

            whether to use classifier free guidance or not

        negative_prompt (`str` or `List[str]`, *optional*):

            The prompt or prompts not to guide the image generation. If not defined, one has to pass

            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is

            less than `1`).

        prompt_embeds (`torch.Tensor`, *optional*):

            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not

            provided, text embeddings will be generated from `prompt` input argument.

        negative_prompt_embeds (`torch.Tensor`, *optional*):

            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt

            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input

            argument.

        lora_scale (`float`, *optional*):

            A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.

        clip_skip (`int`, *optional*):

            Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that

            the output of the pre-final layer will be used for computing the prompt embeddings.

    """
    # set lora scale so that monkey patched LoRA
    # function of text encoder can correctly access it
    if lora_scale is not None and isinstance(pipe, LoraLoaderMixin):
        pipe._lora_scale = lora_scale

        # dynamically adjust the LoRA scale
        if not USE_PEFT_BACKEND:
            adjust_lora_scale_text_encoder(pipe.text_encoder, lora_scale)
        else:
            scale_lora_layers(pipe.text_encoder, lora_scale)

    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    prompt_tokens_id = None
    negative_prompt_tokens_id = None

    if prompt_embeds is None:
        # textual inversion: process multi-vector tokens if necessary
        if isinstance(pipe, TextualInversionLoaderMixin):
            prompt = pipe.maybe_convert_prompt(prompt, pipe.tokenizer)

        text_inputs = pipe.tokenizer(
            prompt,
            padding="max_length",
            max_length=pipe.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids
        prompt_tokens_id = text_inputs.input_ids.detach().cpu().numpy()
        untruncated_ids = pipe.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
            text_input_ids, untruncated_ids
        ):
            removed_text = pipe.tokenizer.batch_decode(
                untruncated_ids[:, pipe.tokenizer.model_max_length - 1 : -1]
            )
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {pipe.tokenizer.model_max_length} tokens: {removed_text}"
            )

        if hasattr(pipe.text_encoder.config, "use_attention_mask") and pipe.text_encoder.config.use_attention_mask:
            attention_mask = text_inputs.attention_mask.to(device)
        else:
            attention_mask = None

        if clip_skip is not None and  clip_skip > 1:
            prompt_embeds = pipe.text_encoder(
                text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
            )
            # Access the `hidden_states` first, that contains a tuple of
            # all the hidden states from the encoder layers. Then index into
            # the tuple to access the hidden states from the desired layer.
            prompt_embeds = prompt_embeds[-1][-clip_skip]
            # We also need to apply the final LayerNorm here to not mess with the
            # representations. The `last_hidden_states` that we typically use for
            # obtaining the final prompt representations passes through the LayerNorm
            # layer.
            prompt_embeds = pipe.text_encoder.text_model.final_layer_norm(prompt_embeds)
        else:
            prompt_embeds = pipe.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
            prompt_embeds = prompt_embeds[0]              

    if pipe.text_encoder is not None:
        prompt_embeds_dtype = pipe.text_encoder.dtype
    elif pipe.unet is not None:
        prompt_embeds_dtype = pipe.unet.dtype
    else:
        prompt_embeds_dtype = prompt_embeds.dtype

    prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)

    bs_embed, seq_len, _ = prompt_embeds.shape
    # duplicate text embeddings for each generation per prompt, using mps friendly method
    prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
    prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

    # get unconditional embeddings for classifier free guidance
    if do_classifier_free_guidance and negative_prompt_embeds is None:
        uncond_tokens: List[str]
        if negative_prompt is None:
            uncond_tokens = [""] * batch_size
        elif prompt is not None and type(prompt) is not type(negative_prompt):
            raise TypeError(
                f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                f" {type(prompt)}."
            )
        elif isinstance(negative_prompt, str):
            uncond_tokens = [negative_prompt]
        elif batch_size != len(negative_prompt):
            raise ValueError(
                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                " the batch size of `prompt`."
            )
        else:
            uncond_tokens = negative_prompt

        # textual inversion: process multi-vector tokens if necessary
        if isinstance(pipe, TextualInversionLoaderMixin):
            uncond_tokens = pipe.maybe_convert_prompt(uncond_tokens, pipe.tokenizer)

        max_length = prompt_embeds.shape[1]
        uncond_input = pipe.tokenizer(
            uncond_tokens,
            padding="max_length",
            max_length=max_length,
            truncation=True,
            return_tensors="pt",
        )
        negative_prompt_tokens_id = uncond_input.input_ids.detach().cpu().numpy()

        if hasattr(pipe.text_encoder.config, "use_attention_mask") and pipe.text_encoder.config.use_attention_mask:
            attention_mask = uncond_input.attention_mask.to(device)
        else:
            attention_mask = None

        if clip_skip is not None and  clip_skip > 1:
            negative_prompt_embeds = pipe.text_encoder(
                uncond_input.input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
            )
            # Access the `hidden_states` first, that contains a tuple of
            # all the hidden states from the encoder layers. Then index into
            # the tuple to access the hidden states from the desired layer.
            negative_prompt_embeds = negative_prompt_embeds[-1][-clip_skip ]
            # We also need to apply the final LayerNorm here to not mess with the
            # representations. The `last_hidden_states` that we typically use for
            # obtaining the final prompt representations passes through the LayerNorm
            # layer.
            negative_prompt_embeds = pipe.text_encoder.text_model.final_layer_norm(negative_prompt_embeds)
        else:
            negative_prompt_embeds = pipe.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask)
            negative_prompt_embeds = negative_prompt_embeds[0]

    if do_classifier_free_guidance:
        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
        seq_len = negative_prompt_embeds.shape[1]

        negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)

        negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
        negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

    if isinstance(pipe, LoraLoaderMixin) and USE_PEFT_BACKEND:
        # Retrieve the original scale by scaling back the LoRA layers
        unscale_lora_layers(pipe.text_encoder, lora_scale)

    return prompt_embeds, negative_prompt_embeds, [negative_prompt_tokens_id, prompt_tokens_id]



def encode_prompt_automatic1111(

    pipe,

    prompt,

    device,

    num_images_per_prompt,

    do_classifier_free_guidance,

    negative_prompt=None,

    prompt_embeds: Optional[torch.Tensor] = None,

    negative_prompt_embeds: Optional[torch.Tensor] = None,

    lora_scale: Optional[float] = None,

    clip_skip: Optional[int] = None,

):
    if lora_scale is not None and isinstance(pipe, LoraLoaderMixin):
        pipe._lora_scale = lora_scale

        # dynamically adjust the LoRA scale
        if not USE_PEFT_BACKEND:
            adjust_lora_scale_text_encoder(pipe.text_encoder, lora_scale)
        else:
            scale_lora_layers(pipe.text_encoder, lora_scale)

    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    prompt_tokens_id = None
    negative_prompt_tokens_id = None

            
    # get unconditional embeddings for classifier free guidance
    uncond_tokens = []
    if do_classifier_free_guidance and negative_prompt_embeds is None:
        if negative_prompt is None:
            uncond_tokens = [""] * batch_size
        elif prompt is not None and type(prompt) is not type(negative_prompt):
            raise TypeError(
                f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                f" {type(prompt)}."
            )
        elif isinstance(negative_prompt, str):
            uncond_tokens = [negative_prompt] + [""] * (batch_size - 1)
        elif batch_size != len(negative_prompt):
            raise ValueError(
                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                " the batch size of `prompt`."
            )
        else:
            uncond_tokens = negative_prompt

        # textual inversion: process multi-vector tokens if necessary
        if isinstance(pipe, TextualInversionLoaderMixin):
            uncond_tokens = pipe.maybe_convert_prompt(uncond_tokens, pipe.tokenizer)
    if len(uncond_tokens) == 0:
        uncond_tokens = [""]* batch_size
        # textual inversion: process multi-vector tokens if necessary
        if isinstance(pipe, TextualInversionLoaderMixin):
            uncond_tokens = pipe.maybe_convert_prompt(uncond_tokens, pipe.tokenizer)

    if prompt_embeds is None:
        if not isinstance(prompt,list):
            prompt = [prompt]
        # textual inversion: process multi-vector tokens if necessary
        if isinstance(pipe, TextualInversionLoaderMixin):
            prompt = pipe.maybe_convert_prompt(prompt, pipe.tokenizer)

    prompt_parser = FrozenCLIPEmbedderWithCustomWords(pipe.tokenizer, pipe.text_encoder,clip_skip)
    prompt_embeds_lst = []
    negative_prompt_embeds_lst =[]
    negative_prompt_tokens_id_lst =[]
    prompt_tokens_id_lst =[]
    for i in range(0,batch_size):
        text_ids, text_embeddings = prompt_parser([uncond_tokens[i], prompt[i]])
        negative_prompt_embeddings, prompt_embeddings = torch.chunk(text_embeddings, 2, dim=0)
        text_ids = np.split(text_ids,text_ids.shape[0])
        negative_prompt_embeddings_id, prompt_embeddings_id = text_ids[0], text_ids[1]
        prompt_embeds_lst.append(prompt_embeddings)
        negative_prompt_embeds_lst.append(negative_prompt_embeddings)
        negative_prompt_tokens_id_lst.append(negative_prompt_embeddings_id)
        prompt_tokens_id_lst.append(prompt_embeddings_id)

    if prompt_embeds is None:
        prompt_embeds = torch.cat(prompt_embeds_lst)
        prompt_tokens_id = np.concatenate(prompt_tokens_id_lst)
    if do_classifier_free_guidance and negative_prompt_embeds is None: 
        negative_prompt_embeds = torch.cat(negative_prompt_embeds_lst)
        negative_prompt_tokens_id = np.concatenate(negative_prompt_tokens_id_lst)
    
    if pipe.text_encoder is not None:
        prompt_embeds_dtype = pipe.text_encoder.dtype
    elif pipe.unet is not None:
        prompt_embeds_dtype = pipe.unet.dtype
    else:
        prompt_embeds_dtype = prompt_embeds.dtype

    prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)

    bs_embed, seq_len, _ = prompt_embeds.shape
    # duplicate text embeddings for each generation per prompt, using mps friendly method
    prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
    prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

    if do_classifier_free_guidance:
        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
        seq_len = negative_prompt_embeds.shape[1]

        negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)

        negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
        negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

    if isinstance(pipe, LoraLoaderMixin) and USE_PEFT_BACKEND:
        # Retrieve the original scale by scaling back the LoRA layers
        unscale_lora_layers(pipe.text_encoder, lora_scale)

    return prompt_embeds, negative_prompt_embeds, [negative_prompt_tokens_id, prompt_tokens_id]




def encode_prompt_function(

    pipe,

    prompt,

    device,

    num_images_per_prompt,

    do_classifier_free_guidance,

    negative_prompt=None,

    prompt_embeds: Optional[torch.Tensor] = None,

    negative_prompt_embeds: Optional[torch.Tensor] = None,

    lora_scale: Optional[float] = None,

    clip_skip: Optional[int] = None,

    long_encode: Optional[bool] = False,

):
    if long_encode == 0:
        return encode_prompt_automatic1111(pipe, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds, negative_prompt_embeds, lora_scale, clip_skip)
    elif long_encode == 1:
    	return encoder_long_prompt(pipe, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds, negative_prompt_embeds, lora_scale, clip_skip)
    return encode_short_prompt(pipe, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds, negative_prompt_embeds, lora_scale, clip_skip)