DuckDB-SQL-Eval / app.py
tdoehmen's picture
revert changes
49c6a0b
raw
history blame
3.51 kB
import gradio as gr
import subprocess
import spaces
import torch
import os
import re
zero = torch.Tensor([0]).cuda()
print(zero.device) # <-- 'cpu' πŸ€”
@spaces.GPU
def run_evaluation(model_name):
print(zero.device) # <-- 'cuda:0' πŸ€—
results = []
# Use the secret HF token from the Hugging Face space
if "HF_TOKEN" not in os.environ:
return "Error: HF_TOKEN not found in environment variables."
manifest_process = None
try:
# Start manifest server in background with explicit CUDA_VISIBLE_DEVICES
manifest_cmd = f"""
cd duckdb-nsql/ &&
CUDA_VISIBLE_DEVICES=0 HF_TOKEN={os.environ['HF_TOKEN']} python -m manifest.api.app \
--model_type huggingface \
--model_generation_type text-generation \
--model_name_or_path {model_name} \
--fp16 \
--device 0
"""
manifest_process = subprocess.Popen(manifest_cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
results.append("Started manifest server in background.")
# Run inference
inference_cmd = f"""
cd duckdb-nsql/ &&
python eval/predict.py \
predict \
eval/data/dev.json \
eval/data/tables.json \
--output-dir output/ \
--stop-tokens ';' \
--overwrite-manifest \
--manifest-client huggingface \
--manifest-connection http://localhost:5000 \
--prompt-format duckdbinstgraniteshort
"""
inference_result = subprocess.run(inference_cmd, shell=True, check=True, capture_output=True, text=True)
results.append("Inference completed.")
# Extract JSON file path from inference output
json_path_match = re.search(r'(.*\.json)', inference_result.stdout)
if not json_path_match:
raise ValueError("Could not find JSON file path in inference output")
json_file = os.path.basename(json_path_match.group(1))
results.append(f"Generated JSON file: {json_file}")
# Run evaluation
eval_cmd = f"""
cd duckdb-nsql/ &&
python eval/evaluate.py evaluate \
--gold eval/data/dev.json \
--db eval/data/databases/ \
--tables eval/data/tables.json \
--output-dir output/ \
--pred output/{json_file}
"""
eval_result = subprocess.run(eval_cmd, shell=True, check=True, capture_output=True, text=True)
# Extract and format metrics from eval output
metrics = eval_result.stdout
if metrics:
results.append(f"Evaluation completed:\n{metrics}")
else:
results.append("Evaluation completed, but get metrics.")
except subprocess.CalledProcessError as e:
results.append(f"Error occurred: {str(e)}")
results.append(f"Command output: {e.output}")
except Exception as e:
results.append(f"An unexpected error occurred: {str(e)}")
finally:
# Terminate the background manifest server
if manifest_process:
manifest_process.terminate()
results.append("Terminated manifest server.")
return "\n\n".join(results)
with gr.Blocks() as demo:
gr.Markdown("# DuckDB SQL Evaluation App")
model_name = gr.Textbox(label="Model Name (e.g., Qwen/Qwen2.5-7B-Instruct)")
start_btn = gr.Button("Start Evaluation")
output = gr.Textbox(label="Output", lines=20)
start_btn.click(fn=run_evaluation, inputs=[model_name], outputs=output)
demo.launch()