Spaces:
Running
Running
import gradio as gr | |
import subprocess | |
import spaces | |
import torch | |
import os | |
import re | |
zero = torch.Tensor([0]).cuda() | |
print(zero.device) # <-- 'cpu' π€ | |
def run_evaluation(model_name): | |
print(zero.device) # <-- 'cuda:0' π€ | |
results = [] | |
# Use the secret HF token from the Hugging Face space | |
if "HF_TOKEN" not in os.environ: | |
return "Error: HF_TOKEN not found in environment variables." | |
manifest_process = None | |
try: | |
# Start manifest server in background with explicit CUDA_VISIBLE_DEVICES | |
manifest_cmd = f""" | |
cd duckdb-nsql/ && | |
CUDA_VISIBLE_DEVICES=0 HF_TOKEN={os.environ['HF_TOKEN']} python -m manifest.api.app \ | |
--model_type huggingface \ | |
--model_generation_type text-generation \ | |
--model_name_or_path {model_name} \ | |
--fp16 \ | |
--device 0 | |
""" | |
manifest_process = subprocess.Popen(manifest_cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) | |
results.append("Started manifest server in background.") | |
# Run inference | |
inference_cmd = f""" | |
cd duckdb-nsql/ && | |
python eval/predict.py \ | |
predict \ | |
eval/data/dev.json \ | |
eval/data/tables.json \ | |
--output-dir output/ \ | |
--stop-tokens ';' \ | |
--overwrite-manifest \ | |
--manifest-client huggingface \ | |
--manifest-connection http://localhost:5000 \ | |
--prompt-format duckdbinstgraniteshort | |
""" | |
inference_result = subprocess.run(inference_cmd, shell=True, check=True, capture_output=True, text=True) | |
results.append("Inference completed.") | |
# Extract JSON file path from inference output | |
json_path_match = re.search(r'(.*\.json)', inference_result.stdout) | |
if not json_path_match: | |
raise ValueError("Could not find JSON file path in inference output") | |
json_file = os.path.basename(json_path_match.group(1)) | |
results.append(f"Generated JSON file: {json_file}") | |
# Run evaluation | |
eval_cmd = f""" | |
cd duckdb-nsql/ && | |
python eval/evaluate.py evaluate \ | |
--gold eval/data/dev.json \ | |
--db eval/data/databases/ \ | |
--tables eval/data/tables.json \ | |
--output-dir output/ \ | |
--pred output/{json_file} | |
""" | |
eval_result = subprocess.run(eval_cmd, shell=True, check=True, capture_output=True, text=True) | |
# Extract and format metrics from eval output | |
metrics = eval_result.stdout | |
if metrics: | |
results.append(f"Evaluation completed:\n{metrics}") | |
else: | |
results.append("Evaluation completed, but get metrics.") | |
except subprocess.CalledProcessError as e: | |
results.append(f"Error occurred: {str(e)}") | |
results.append(f"Command output: {e.output}") | |
except Exception as e: | |
results.append(f"An unexpected error occurred: {str(e)}") | |
finally: | |
# Terminate the background manifest server | |
if manifest_process: | |
manifest_process.terminate() | |
results.append("Terminated manifest server.") | |
return "\n\n".join(results) | |
with gr.Blocks() as demo: | |
gr.Markdown("# DuckDB SQL Evaluation App") | |
model_name = gr.Textbox(label="Model Name (e.g., Qwen/Qwen2.5-7B-Instruct)") | |
start_btn = gr.Button("Start Evaluation") | |
output = gr.Textbox(label="Output", lines=20) | |
start_btn.click(fn=run_evaluation, inputs=[model_name], outputs=output) | |
demo.launch() |