Spaces:
Running
Running
File size: 12,927 Bytes
b247dc4 c635df2 b247dc4 c635df2 b247dc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
"""Run dataset on text2sql zazu experiment.
See README.md for more details.
"""
import datetime
import json
import multiprocessing
import random
import re
from pathlib import Path
import click
import numpy as np
from constants import PROMPT_FORMATTERS
from loaders import DefaultLoader
from get_manifest import get_manifest
from manifest import Manifest
from prompt_formatters import RajkumarFormatter
from rich.console import Console
from schema import Table, TextToSQLModelResponse, TextToSQLParams
from text_to_sql import instruction_to_sql, instruction_to_sql_list
from doc_retriever import (
load_documentation,
split_documents,
embed_documents,
query_docs,
)
from tqdm import tqdm
from transformers import AutoTokenizer
console = Console(soft_wrap=True)
def generate_sql(
manifest: Manifest,
text_to_sql_in: list[TextToSQLParams],
retrieved_docs: list[list[str]],
prompt_formatter: RajkumarFormatter,
stop_tokens: list[str] | None = None,
overwrite_manifest: bool = False,
max_tokens: int = 300,
temperature: float = 0.1,
num_beams: int = 2,
parallel: bool = False,
) -> list[tuple[str, TextToSQLModelResponse]]:
"""Call our text2sql function with manifest of our choice."""
if parallel:
instruction_to_sql_resps: list[
TextToSQLModelResponse
] = instruction_to_sql_list(
params=text_to_sql_in,
extra_context=retrieved_docs,
manifest=manifest,
prompt_formatter=prompt_formatter,
overwrite_manifest=overwrite_manifest,
max_tokens=max_tokens,
temperature=0.1,
stop_sequences=stop_tokens,
num_beams=num_beams,
)
else:
instruction_to_sql_resps = [
instruction_to_sql(
params=_text_to_sql_in,
extra_context=_retrieved_docs,
manifest=manifest,
prompt_formatter=prompt_formatter,
overwrite_manifest=overwrite_manifest,
max_tokens=max_tokens,
temperature=temperature,
stop_sequences=stop_tokens,
num_beams=num_beams,
)
for _retrieved_docs, _text_to_sql_in in tqdm(
zip(retrieved_docs, text_to_sql_in),
desc="Generating SQL",
total=len(text_to_sql_in),
disable=(len(text_to_sql_in) <= 1),
)
]
assert len(instruction_to_sql_resps) == len(text_to_sql_in)
sql_statements = []
for i in range(len(instruction_to_sql_resps)):
sql_statement = instruction_to_sql_resps[i].output.strip()
if "<>" in sql_statement:
sql_statement.replace("<>", "!=")
# Models sometime train to predict <databasename/schema> | <sql>
sql_statement = sql_statement.split("|")[-1].strip()
sql_statements.append(sql_statement)
return list(zip(sql_statements, instruction_to_sql_resps))
def get_text_to_sql_in(
input_question: dict, db_to_tables: dict[str, dict[str, Table]]
) -> TextToSQLParams:
"""Format input question for text2sql function."""
question = input_question["question"]
db_id = input_question.get("db_id", None)
if db_id != "none":
table_params = list(db_to_tables.get(db_id, {}).values())
else:
table_params = []
if len(table_params) == 0:
console.print(f"[red] WARNING: No tables found for {db_id} [/red]")
text_to_sql_in = TextToSQLParams(
instruction=question,
database=db_id,
tables=table_params,
)
return text_to_sql_in
@click.group()
def cli() -> None:
"""Entrypoint."""
pass
@cli.command()
@click.argument("dataset-path")
@click.argument("table-meta-path")
@click.option("--output-dir", type=str, default="")
@click.option("--run-name", type=str, default="")
@click.option("--num-run", type=int, default=-1)
@click.option("--num-print", type=int, default=20)
# Format options
@click.option("--prompt-format", type=str, default="spider")
# Prompt options
@click.option("--stop-tokens", type=str, default=[], multiple=True)
@click.option("--max-tokens", type=int, default=200)
@click.option("--temperature", type=float, default=0)
@click.option("--num-beams", type=int, default=-1) # use whatever is in manifest
@click.option("--max-context-length", type=int, default=-1)
# Docs options
@click.option(
"--markdown-docs-path",
#type=click.Path(
# exists=True, file_okay=True, dir_okay=True, readable=True, path_type=Path
#),
default="eval/docs/duckdb-web/docs/archive/0.9.2/sql",
)
@click.option("--num-retrieved-docs", type=int, default=0)
# Manifest options
@click.option("--manifest-client", type=str, default="openai")
@click.option("--manifest-engine", type=str, default="gpt-4o")
@click.option("--manifest-connection", type=str, default="http://localhost:5005")
@click.option("--overwrite-manifest", is_flag=True, default=False)
@click.option("--parallel", is_flag=True, default=False)
def predict(
dataset_path: str,
table_meta_path: str,
output_dir: str,
run_name: str,
num_run: int,
num_print: int,
prompt_format: str,
stop_tokens: list[str],
max_tokens: int,
temperature: float,
num_beams: int,
max_context_length: int,
markdown_docs_path: Path,
num_retrieved_docs: int,
manifest_client: str,
manifest_engine: str,
manifest_connection: str,
overwrite_manifest: bool,
parallel: bool,
) -> None:
"""Predict SQL.
Args:
dataset_path: the dataset path.
table_meta_path: the json path of the table metadata.
database_path: the database path for sqlite.
output_dir: the prediction output directory
run_name: special prefix to add to filename
num_run: the number of examples to run
num_print: the number of examples to print
prompt_format: the format of the prompt. E.g., "rajkumar"
stop_tokens: the stop tokens to try
max_tokens: the max tokens
temperature: the temperature
num_beams: the number of beams
max_context_length: max context length for demonstration truncation (-1 means None)
markdown_docs_path: path to duckdb sql docs
num_retrieved_docs: number of docs to retrieve
manifest_client: the manifest client
manifest_engine: the manifest engine
manifest_connection: the manifest connection
"""
multiprocessing.set_start_method("spawn", force=True)
random.seed(0)
np.random.seed(0)
locals_dict = locals()
locals_dict["markdown_docs_path"] = str(markdown_docs_path)
console.print(json.dumps(locals_dict, indent=2))
data_formatter = DefaultLoader()
if prompt_format not in PROMPT_FORMATTERS:
raise ValueError(f"Unknown prompt format {prompt_format}")
prompt_formatter = PROMPT_FORMATTERS[prompt_format]()
# load manifest
manifest = get_manifest(
manifest_client=manifest_client,
manifest_connection=manifest_connection,
manifest_engine=manifest_engine,
)
manifest_params = manifest.client_pool.get_current_client().get_model_params()
console.print(f"Running with {manifest_params} manifest.")
model_name = manifest_params.get("engine", manifest_params["model_name"])
if manifest_client in {"openai", "openaichat", "openrouter", "azureendpoint", "inference_api"}:
tokenizer = AutoTokenizer.from_pretrained("gpt2", trust_remote_code=True)
else:
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
if stop_tokens:
stop_tokens = [st.strip("'") for st in stop_tokens]
console.print(f"Stop tokens: {stop_tokens}")
# Get output filename
full_dataset_path = Path(dataset_path)
# Get todays date
date_today = datetime.datetime.now().strftime("%y-%m-%d")
if run_name:
run_name = f"{run_name}_"
suffix = f"{run_name}{full_dataset_path.stem}_{date_today}.json" # noqa: E501
prefix = f"{prompt_format}_{num_retrieved_docs}docs"
if manifest_client in {"openai", "openaiazure"}:
middleix = manifest_engine
elif manifest_client in {"huggingface", "ray"}:
middleix = Path(manifest_params.get("model_path", "")).name.replace("/", "-")
elif manifest_client in {"toma", "openrouter", "openaichat", "azureendpoint", "inference_api"}:
middleix = manifest_engine.split("/")[-1]
else:
raise ValueError(f"Unknown manifest client {manifest_client}")
output_filename = f"{prefix}_{middleix}_{suffix}"
console.print(f"Saving to {Path(output_dir) / output_filename}")
Path(output_dir).mkdir(parents=True, exist_ok=True)
console.print("Loading metadata...")
db_to_tables = data_formatter.load_table_metadata(table_meta_path)
console.print("Loading data...")
data = data_formatter.load_data(dataset_path)
if num_run > 0:
console.print(f"Running on {min(len(data), num_run)} examples")
data = data[:num_run]
original_data = data
# load the examples
console.print("Formatting data...")
num_print = min(num_print, len(data))
token_lengths = []
text_to_sql_in = [
get_text_to_sql_in(input_question, db_to_tables) for input_question in data
]
if num_retrieved_docs > 0:
console.print("Loading documenration and indexing...")
retrieved_docs = []
doc_contents = load_documentation(markdown_docs_path)
chunked_docs = split_documents(doc_contents)
embedded_docs, full_embedding_mat = embed_documents(chunked_docs)
for i in tqdm(range(len(text_to_sql_in)), desc="Retrieving docs"):
_, retrieved_docs_strings = query_docs(
text_to_sql_in[i].instruction,
embedded_docs,
full_embedding_mat,
top_n=num_retrieved_docs,
)
retrieved_docs.append(retrieved_docs_strings)
else:
retrieved_docs = [[] for _ in range(len(text_to_sql_in))]
for i in range(num_print):
# Run a few to get some examples to print
generated_responses = generate_sql(
manifest=manifest,
text_to_sql_in=[text_to_sql_in[i]],
retrieved_docs=[retrieved_docs[i]],
stop_tokens=stop_tokens,
max_tokens=max_tokens,
temperature=temperature,
num_beams=num_beams,
prompt_formatter=prompt_formatter,
overwrite_manifest=overwrite_manifest,
parallel=parallel,
)
for prediction, model_response in generated_responses:
prediction = re.sub(r"[\s\t\n]+", " ", prediction)
token_lengths.append(len(tokenizer(prediction).input_ids))
console.print(f"[blue]Prompt:[/blue] {model_response.final_prompt}")
console.print(f"[red]Prediction:[/red] {prediction}")
if data[i].get("query") or data[i].get("sql"):
console.print(
"[purple]Gold:[/purple] "
f"{data[i].get('query') or data[i].get('sql')}"
)
console.print("\n****\n")
# Run the entire thing now - the to_print results will be in cache and fast
generated_sqls = generate_sql(
manifest=manifest,
text_to_sql_in=text_to_sql_in,
retrieved_docs=retrieved_docs,
stop_tokens=stop_tokens,
max_tokens=max_tokens,
temperature=temperature,
num_beams=num_beams,
prompt_formatter=prompt_formatter,
overwrite_manifest=overwrite_manifest,
parallel=parallel,
)
with open(Path(output_dir) / output_filename, "w") as fout:
for i, (prediction, model_response) in enumerate(generated_sqls):
if isinstance(model_response.final_prompt, str):
token_lengths.append(
len(tokenizer(model_response.final_prompt).input_ids)
)
else:
for prompt in model_response.final_prompt:
token_lengths.append(len(tokenizer(prompt["content"]).input_ids))
entry = {
**original_data[i],
"pred": prediction,
"raw_pred": model_response.output,
"raw_output": model_response.raw_output,
"prompt": model_response.final_prompt,
"tables": [tbl.dict() for tbl in text_to_sql_in[i].tables or []],
}
formatted_entry = data_formatter.format_output(entry)
print(json.dumps(formatted_entry), file=fout)
overflow = len([tl for tl in token_lengths if tl > 2048]) / len(token_lengths)
console.print(f"Overflow 2048 prompt {100*overflow:.2f}%")
console.print(f"Saved to {Path(output_dir) / output_filename}")
if __name__ == "__main__":
cli()
|