Spaces:
Running
Running
File size: 11,009 Bytes
e9713ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
import os
import re
import duckdb
import asyncio
import threading
from typing import Tuple, Any, List, Set
from itertools import product
from collections import defaultdict
import tqdm
import random
import time
import pickle as pkl
import subprocess
from itertools import chain
import shutil
from pathlib import Path
from .parse import get_all_preds_for_execution, remove_distinct
threadLock = threading.Lock()
TIMEOUT = 60
TMP_DIR = "_tmp"
EXEC_TMP_DIR = os.path.join(os.path.dirname(__file__), "tmp")
def permute_tuple(element: Tuple, perm: Tuple) -> Tuple:
assert len(element) == len(perm)
return tuple([element[i] for i in perm])
def unorder_row(row: Tuple) -> Tuple:
return tuple(sorted(row, key=lambda x: str(x) + str(type(x))))
def tuple_sublists(row: Tuple) -> Tuple:
new_row = []
for item in row:
if isinstance(item, list):
new_row.append(tuple(item))
elif isinstance(item, dict):
new_row.append(tuple(sorted(item.items(), key=lambda x: x[0])))
print(new_row[-1])
else:
new_row.append(item)
new_row = tuple(new_row)
return new_row
# unorder each row in the table
# [result_1 and result_2 has the same bag of unordered row]
# is a necessary condition of
# [result_1 and result_2 are equivalent in denotation]
def quick_rej(result1: List[Tuple], result2: List[Tuple], order_matters: bool) -> bool:
s1 = [unorder_row(row) for row in result1]
s2 = [unorder_row(row) for row in result2]
if order_matters:
return s1 == s2
else:
return set(s1) == set(s2)
# return whether two bag of relations are equivalent
def multiset_eq(l1: List, l2: List) -> bool:
if len(l1) != len(l2):
return False
d = defaultdict(int)
for e in l1:
d[e] = d[e] + 1
for e in l2:
d[e] = d[e] - 1
if d[e] < 0:
return False
return True
def get_constraint_permutation(tab1_sets_by_columns: List[Set], result2: List[Tuple]):
num_cols = len(result2[0])
perm_constraints = [{i for i in range(num_cols)} for _ in range(num_cols)]
if num_cols <= 3:
return product(*perm_constraints)
# we sample 20 rows and constrain the space of permutations
for _ in range(20):
random_tab2_row = random.choice(result2)
for tab1_col in range(num_cols):
for tab2_col in set(perm_constraints[tab1_col]):
if random_tab2_row[tab2_col] not in tab1_sets_by_columns[tab1_col]:
perm_constraints[tab1_col].remove(tab2_col)
return product(*perm_constraints)
# check whether two denotations are correct
def result_eq(result1: List[Tuple], result2: List[Tuple], order_matters: bool) -> bool:
if len(result1) == 0 and len(result2) == 0:
return True
# if length is not the same, then they are definitely different bag of rows
if len(result1) != len(result2):
return False
num_cols = len(result1[0])
# if the results do not have the same number of columns, they are different
if len(result2[0]) != num_cols:
return False
result1 = [tuple_sublists(row) for row in result1]
result2 = [tuple_sublists(row) for row in result2]
# unorder each row and compare whether the denotation is the same
# this can already find most pair of denotations that are different
if not quick_rej(result1, result2, order_matters):
return False
# the rest of the problem is in fact more complicated than one might think
# we want to find a permutation of column order and a permutation of row order,
# s.t. result_1 is the same as result_2
# we return true if we can find such column & row permutations
# and false if we cannot
tab1_sets_by_columns = [{row[i] for row in result1} for i in range(num_cols)]
# on a high level, we enumerate all possible column permutations that might make result_1 == result_2
# we decrease the size of the column permutation space by the function get_constraint_permutation
# if one of the permutation make result_1, result_2 equivalent, then they are equivalent
for perm in get_constraint_permutation(tab1_sets_by_columns, result2):
if len(perm) != len(set(perm)):
continue
if num_cols == 1:
result2_perm = result2
else:
result2_perm = [permute_tuple(element, perm) for element in result2]
if order_matters:
if result1 == result2_perm:
return True
else:
# in fact the first condition must hold if the second condition holds
# but the first is way more efficient implementation-wise
# and we use it to quickly reject impossible candidates
if set(result1) == set(result2_perm) and multiset_eq(result1, result2_perm):
return True
return False
def replace_cur_year(query: str) -> str:
return re.sub(
"YEAR\s*\(\s*CURDATE\s*\(\s*\)\s*\)\s*", "2020", query, flags=re.IGNORECASE
)
class WithDuckDBConnectionInTmpDir(object):
def __init__(self, databases_file, tmp_dir):
if not os.path.exists(databases_file):
raise Exception("Database note found: %s" % databases_file)
os.makedirs(tmp_dir)
shutil.copy(databases_file, tmp_dir)
self.tmp_dbfile = Path(databases_file).name
self.tmp_dir = tmp_dir
self.original_wd = os.getcwd()
def __enter__(self):
os.chdir(self.tmp_dir)
self.con = duckdb.connect(self.tmp_dbfile)
return self.con
def __exit__(self, *args):
self.con.close()
os.chdir(self.original_wd)
shutil.rmtree(self.tmp_dir)
async def exec_on_db_(
duckdb_path: str, query: str, setup_sql: str, validate_sql: str
) -> Tuple[str, Any]:
# query = replace_cur_year(query)
try:
with WithDuckDBConnectionInTmpDir(duckdb_path, TMP_DIR) as connection:
if setup_sql is not None:
print("Running Setup SQL:" + setup_sql)
connection.execute(setup_sql)
ddb_benchmark_result_rel = connection.sql(query)
if ddb_benchmark_result_rel is not None:
connection.execute(
"CREATE TABLE ddb_benchmark_result AS SELECT * FROM ddb_benchmark_result_rel"
)
else:
connection.execute("CREATE TABLE ddb_benchmark_result(empty TEXT)")
print("Running Validation SQL:" + validate_sql)
result = connection.execute(validate_sql).fetchall()
return "result", result
except Exception as e:
return "exception", e
async def exec_on_db(
duckdb_path: str,
query: str,
setup_sql: str,
validate_sql: str,
timeout: int = TIMEOUT,
) -> Tuple[str, Any]:
try:
return await asyncio.wait_for(
exec_on_db_(duckdb_path, query, setup_sql, validate_sql), timeout
)
except asyncio.TimeoutError:
return ("exception", TimeoutError)
except Exception as e:
return ("exception", e)
# postprocess the model predictions to avoid execution errors
# e.g. removing spaces between ">" and "="
def postprocess(query: str) -> str:
query = query.replace("> =", ">=").replace("< =", "<=").replace("! =", "!=")
return query
# approximate whether p_str and g_str are semantically equivalent
# db is the database path
# we are going to evaluate whether they are equivalent in all the databases
# that are in the same directory as db
# 0 if denotationally equivalent
# 1 otherwise
# the meaning of each auxillary argument can be seen in the parser definition in evaluation.py
def eval_exec_match(
db: str,
p_str: str,
g_str: str,
setup_sql: str,
validate_sql: str,
plug_value: bool,
keep_distinct: bool,
progress_bar_for_each_datapoint: bool,
) -> int:
# post-process the prediction.
# e.g. removing spaces between ">" and "="
p_str, g_str = postprocess(p_str), postprocess(g_str)
if not keep_distinct:
try:
# if sqlparse can't parse p_str, we should not even try to execute it
p_str = remove_distinct(p_str)
except Exception as e:
return 0
g_str = remove_distinct(g_str)
# we decide whether two denotations are equivalent based on "bag semantics"
# https://courses.cs.washington.edu/courses/cse444/10sp/lectures/lecture16.pdf
# if there is order by in query, then we assume order of the rows matter
# order by might also be used to find the max/min instead of sorting,
# but in that case the result mostly only contains one row and hence order_matters does not make a difference
order_matters = "order by" in g_str.lower()
# find all databases in the same directory
db_dir = os.path.dirname(db)
db_paths = [
os.path.join(db_dir, basename)
for basename in os.listdir(db_dir)
if ".duckdb" in basename
]
preds = [p_str]
# if plug in value (i.e. we do not consider value prediction correctness)
# enumerate all ways to plug in values in the gold query to the model predictions
# otherwise, we only evaluate the predicted query with its own value prediction
if plug_value:
_, preds = get_all_preds_for_execution(g_str, p_str)
# we did not add this line in our EMNLP work
# this reduces "false negatives" when value is substituted
preds = chain([p_str], preds)
for pred in preds:
pred_passes = 1
# compare the gold and predicted denotations on each database in the directory
# wrap with progress bar if required
if progress_bar_for_each_datapoint:
ranger = tqdm.tqdm(db_paths)
else:
ranger = db_paths
for db_path in ranger:
g_flag, g_denotation = asyncio.run(
exec_on_db(
db_path, g_str, setup_sql=setup_sql, validate_sql=validate_sql
)
)
p_flag, p_denotation = asyncio.run(
exec_on_db(
db_path, pred, setup_sql=setup_sql, validate_sql=validate_sql
)
)
# we should expect the gold to be succesfully executed on the database
assert (
g_flag != "exception"
), f"gold query {g_str} has error {g_denotation} on database file {db_path}"
# wrong if execution fails
if p_flag == "exception":
pred_passes = 0
# if denotations are not equivalent, the prediction must be wrong
elif not result_eq(g_denotation, p_denotation, order_matters=order_matters):
pred_passes = 0
if pred_passes == 0:
break
# the model prediction has the same denotation as the gold for all databases
if pred_passes == 1:
return 1
# none of the predictions passed
return 0
|