Spaces:
Running
Running
File size: 15,350 Bytes
e9713ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"import sqlparse\n",
"import pickle as pkl\n",
"dataset_names = ['academic', 'atis', 'advising', 'geography', 'imdb', 'restaurants', 'scholar', 'yelp']\n",
"\n",
"# these datasets are small, so we use the full set. \n",
"new_split_defined = {'restaurants', 'academic', 'imdb', 'yelp'} "
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# loading the original datasets from the paper:\n",
"# Improving Text-to-SQL Evaluation Methodology\n",
"\n",
"# a dataset is a list of dictionaries\n",
"# in the original dictionary, each datapoint might consist of several natural language sentences or SQL\n",
"orig_datasets = []\n",
"for dataset_name in dataset_names:\n",
" orig_dataset = json.load(open('text2sql-data/data/%s.json' % dataset_name))\n",
" for idx, d in enumerate(orig_dataset):\n",
" \n",
" d['orig_id'] = (dataset_name, idx)\n",
" \n",
" # fixing annotations here\n",
" \n",
" # change \"company_name\" to producer name, otherwise there is no variable to replace\n",
" if dataset_name == 'imdb' and idx == 27:\n",
" d['sql'][0] = 'SELECT MOVIEalias0.TITLE FROM COMPANY AS COMPANYalias0 , COPYRIGHT AS COPYRIGHTalias0 , MOVIE AS MOVIEalias0 WHERE COMPANYalias0.NAME = \"producer_name0\" AND COPYRIGHTalias0.CID = COMPANYalias0.ID AND MOVIEalias0.MID = COPYRIGHTalias0.MSID AND MOVIEalias0.RELEASE_YEAR > movie_release_year0 ;'\n",
" \n",
" # removing the extra space surrounding the variable actor_name0\n",
" if dataset_name == 'imdb' and idx == 78:\n",
" d['sql'][0] = 'SELECT MAX( DERIVED_TABLEalias0.DERIVED_FIELDalias0 ) FROM ( SELECT COUNT( DISTINCT ( MOVIEalias0.TITLE ) ) AS DERIVED_FIELDalias0 FROM ACTOR AS ACTORalias0 , CAST AS CASTalias0 , MOVIE AS MOVIEalias0 WHERE ACTORalias0.NAME = \"actor_name0\" AND CASTalias0.AID = ACTORalias0.AID AND MOVIEalias0.MID = CASTalias0.MSID GROUP BY MOVIEalias0.RELEASE_YEAR ) AS DERIVED_TABLEalias0 ;'\n",
" \n",
" # there was a scoping error; changed AUTHORalias1 to AUTHORalias0, PUBLICATIONalias1 to PUBLICATIONalias0\n",
" if dataset_name == 'academic' and idx == 182:\n",
" d['sql'][0] = 'SELECT DERIVED_FIELDalias0 FROM ( SELECT AUTHORalias0.NAME AS DERIVED_FIELDalias0 , COUNT( DISTINCT ( PUBLICATIONalias0.TITLE ) ) AS DERIVED_FIELDalias1 FROM AUTHOR AS AUTHORalias0 , CONFERENCE AS CONFERENCEalias0 , PUBLICATION AS PUBLICATIONalias0 , WRITES AS WRITESalias0 WHERE CONFERENCEalias0.NAME = \"conference_name0\" AND PUBLICATIONalias0.CID = CONFERENCEalias0.CID AND WRITESalias0.AID = AUTHORalias0.AID AND WRITESalias0.PID = PUBLICATIONalias0.PID GROUP BY AUTHORalias0.NAME ) AS DERIVED_TABLEalias0 , ( SELECT AUTHORalias1.NAME AS DERIVED_FIELDalias2 , COUNT( DISTINCT ( PUBLICATIONalias1.TITLE ) ) AS DERIVED_FIELDalias3 FROM AUTHOR AS AUTHORalias1 , CONFERENCE AS CONFERENCEalias1 , PUBLICATION AS PUBLICATIONalias1 , WRITES AS WRITESalias1 WHERE CONFERENCEalias1.NAME = \"conference_name1\" AND PUBLICATIONalias1.CID = CONFERENCEalias1.CID AND WRITESalias1.AID = AUTHORalias1.AID AND WRITESalias1.PID = PUBLICATIONalias1.PID GROUP BY AUTHORalias1.NAME ) AS DERIVED_TABLEalias1 WHERE DERIVED_TABLEalias0.DERIVED_FIELDalias1 > DERIVED_TABLEalias1.DERIVED_FIELDalias3 AND DERIVED_TABLEalias1.DERIVED_FIELDalias2 = DERIVED_TABLEalias0.DERIVED_FIELDalias0 ;'\n",
" \n",
" # wrong number of arguments to function COUNT(), change from \",\" to \"||\" for sqlite3 to recognize and execute\n",
" if dataset_name == 'advising' and idx == 107:\n",
" d['sql'][0] = 'SELECT COUNT( DISTINCT COURSEalias1.DEPARTMENT || COURSEalias0.NUMBER ) FROM COURSE AS COURSEalias0 , COURSE AS COURSEalias1 , COURSE_PREREQUISITE AS COURSE_PREREQUISITEalias0 , STUDENT_RECORD AS STUDENT_RECORDalias0 WHERE COURSEalias0.COURSE_ID = COURSE_PREREQUISITEalias0.PRE_COURSE_ID AND COURSEalias1.COURSE_ID = COURSE_PREREQUISITEalias0.COURSE_ID AND COURSEalias1.DEPARTMENT = \"department0\" AND COURSEalias1.NUMBER = number0 AND STUDENT_RECORDalias0.COURSE_ID = COURSEalias0.COURSE_ID AND STUDENT_RECORDalias0.STUDENT_ID = 1 ;'\n",
" \n",
" # there was not example given for level1 and hence replacing variable with values leads to errors\n",
" if dataset_name == 'advising' and idx == 132:\n",
" d['variables'][0]['example'] = '300'\n",
" \n",
" # cannot use count and order without group by; added grouping by actor_id\n",
" if dataset_name == 'imdb' and idx == 79:\n",
" d['sql'][0] = 'SELECT ACTORalias0.NAME FROM ACTOR AS ACTORalias0 , CAST AS CASTalias0 , MOVIE AS MOVIEalias0 WHERE CASTalias0.AID = ACTORalias0.AID AND MOVIEalias0.MID = CASTalias0.MSID GROUP BY ACTORalias0.AID ORDER BY COUNT( DISTINCT ( MOVIEalias0.TITLE ) ) DESC LIMIT 1 ;'\n",
" \n",
" # cannot use count and order without group by; added grouping by actor_id\n",
" if dataset_name == 'imdb' and idx == 80:\n",
" d['sql'][0] = 'SELECT ACTORalias0.NAME FROM ACTOR AS ACTORalias0 , CAST AS CASTalias0 , DIRECTED_BY AS DIRECTED_BYalias0 , DIRECTOR AS DIRECTORalias0 , MOVIE AS MOVIEalias0 WHERE CASTalias0.AID = ACTORalias0.AID AND DIRECTORalias0.DID = DIRECTED_BYalias0.DID AND MOVIEalias0.MID = CASTalias0.MSID AND MOVIEalias0.MID = DIRECTED_BYalias0.MSID GROUP BY ACTORalias0.AID ORDER BY COUNT( DISTINCT ( MOVIEalias0.TITLE ) ) DESC LIMIT 1 ;'\n",
" \n",
" # table has \"u\" in the neighborhood spelling.\n",
" n_before, n_after = 'NEIGHBORHOOD', 'NEIGHBOURHOOD'\n",
" if dataset_name == 'yelp':\n",
" d['sql'][0] = d['sql'][0].replace(n_before, n_after)\n",
" \n",
" if dataset_name == 'yelp' and idx == 42:\n",
" d['sql'][0] = 'SELECT NEIGHBOURHOODalias0.NEIGHBOURHOOD_NAME FROM BUSINESS AS BUSINESSalias0 , NEIGHBOURHOOD AS NEIGHBOURHOODalias0 , REVIEW AS REVIEWalias0 , USER AS USERalias0 WHERE NEIGHBOURHOODalias0.BUSINESS_ID = BUSINESSalias0.BUSINESS_ID AND REVIEWalias0.BUSINESS_ID = BUSINESSalias0.BUSINESS_ID AND USERalias0.NAME = \"user_name0\" AND USERalias0.USER_ID = REVIEWalias0.USER_ID ;'\n",
"\n",
" orig_datasets.extend(orig_dataset)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"There are 3509 datapoints in the new testset\n"
]
}
],
"source": [
"# we create the new testset here\n",
"new_testset = []\n",
"for d in orig_datasets:\n",
" orig_id = d['orig_id']\n",
" db_id, idx = orig_id\n",
" \n",
" # we only incorporate the test split if the dataset is large enough\n",
" # otherwise we incorporate the entire dataset\n",
" if d['query-split'] != 'test' and db_id not in new_split_defined:\n",
" continue\n",
" sql = d['sql'][0]\n",
" instance_variables = d['variables']\n",
" instance_name2examples = {d['name']: d['example'] for d in instance_variables}\n",
" \n",
" # we create a new datapoint for each natural language query\n",
" for sentence in d['sentences']:\n",
" new_datapoint = {\n",
" 'text': sentence['text'],\n",
" 'query': sql,\n",
" 'variables': instance_variables,\n",
" 'orig_id': orig_id,\n",
" 'db_id': db_id,\n",
" 'db_path': 'database/{db_id}/{db_id}.sqlite'.format(db_id=db_id)\n",
" }\n",
" new_testset.append(new_datapoint)\n",
"print('There are %d datapoints in the new testset' % len(new_testset))"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import re\n",
"\n",
"# this block implements a function that extract variable names from text and sql\n",
"# later we use it to ensure that every variable is replaced\n",
"\n",
"variable_pattern = re.compile('^[a-z_]+[0-9]+$')\n",
"\n",
"def extract_variable_names(t):\n",
" tokens = t.replace('\"', '').replace('%', '').split(' ')\n",
" var_names = {v for v in tokens if variable_pattern.match(v) and 'alias' not in v}\n",
" return var_names\n",
"\n",
"test = False\n",
"if test:\n",
" sql = 'SELECT BUSINESSalias0.NAME FROM BUSINESS AS BUSINESSalias0 , REVIEW AS REVIEWalias0 WHERE REVIEWalias0.BUSINESS_ID = BUSINESSalias0.BUSINESS_ID AND REVIEWalias0.MONTH = \"review_month0\" GROUP BY BUSINESSalias0.NAME ORDER BY COUNT( DISTINCT ( REVIEWalias0.TEXT ) ) DESC LIMIT 1 ;'\n",
" print(extract_variable_names(sql))\n",
" text = 'return me the homepage of journal_name0 .'\n",
" print(extract_variable_names(text))"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# this block removes extra space surrounding variable names\n",
"def remove_extra_space_around_variable(t):\n",
" var_names = extract_variable_names(t)\n",
" result = str(t)\n",
" for v in var_names:\n",
" result = result.replace('\" ' + v + ' \"', v)\n",
" return result"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"set()\n"
]
}
],
"source": [
"problematic = set()\n",
"\n",
"for datapoint in new_testset:\n",
" orig_id = datapoint['orig_id']\n",
" \n",
" # remove extra whitespace surrounding the text\n",
" datapoint['text'] = remove_extra_space_around_variable(datapoint['text'])\n",
" \n",
" # there should not be extra whitespace surrounding the sql variables\n",
" if datapoint['query'] != remove_extra_space_around_variable(datapoint['query']):\n",
" problematic.add(orig_id)\n",
"\n",
" text_vars = extract_variable_names(datapoint['text'])\n",
" sql_vars = extract_variable_names(datapoint['query'])\n",
" \n",
" instance_variables = {d['name']: d for d in datapoint['variables']}\n",
" \n",
" # we ensure that all the variables in the sql query and the text can be replaced\n",
" # by some variable in the variable dictionary\n",
" if len(text_vars - instance_variables.keys()) != 0 or len(sql_vars - instance_variables.keys()):\n",
" problematic.add(orig_id)\n",
" \n",
" # replace the variables with the examples in the variable dictionary\n",
" for text_var in text_vars:\n",
" datapoint['text'] = datapoint['text'].replace(text_var, instance_variables[text_var]['example'])\n",
" \n",
" for sql_var in sql_vars:\n",
" datapoint['query'] = datapoint['query'].replace(sql_var, instance_variables[sql_var]['example'])\n",
"\n",
"# we can trace back which datapoints do not satisfy the assumption,\n",
"# then go back and fix it manually\n",
"print(problematic)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{'db_id': 'academic',\n",
" 'db_path': 'database/academic/academic.sqlite',\n",
" 'orig_id': ('academic', 0),\n",
" 'query': 'SELECT JOURNALalias0.HOMEPAGE FROM JOURNAL AS JOURNALalias0 WHERE '\n",
" 'JOURNALalias0.NAME = \"PVLDB\" ;',\n",
" 'text': 'return me the homepage of PVLDB .',\n",
" 'variables': [{'example': 'PVLDB',\n",
" 'location': 'both',\n",
" 'name': 'journal_name0',\n",
" 'type': 'journal_name'}]},\n",
" {'db_id': 'academic',\n",
" 'db_path': 'database/academic/academic.sqlite',\n",
" 'orig_id': ('academic', 1),\n",
" 'query': 'SELECT AUTHORalias0.HOMEPAGE FROM AUTHOR AS AUTHORalias0 WHERE '\n",
" 'AUTHORalias0.NAME = \"H. V. Jagadish\" ;',\n",
" 'text': 'return me the homepage of H. V. Jagadish .',\n",
" 'variables': [{'example': 'H. V. Jagadish',\n",
" 'location': 'both',\n",
" 'name': 'author_name0',\n",
" 'type': 'author_name'}]},\n",
" {'db_id': 'academic',\n",
" 'db_path': 'database/academic/academic.sqlite',\n",
" 'orig_id': ('academic', 2),\n",
" 'query': 'SELECT PUBLICATIONalias0.ABSTRACT FROM PUBLICATION AS '\n",
" 'PUBLICATIONalias0 WHERE PUBLICATIONalias0.TITLE = \"Making database '\n",
" 'systems usable\" ;',\n",
" 'text': 'return me the abstract of Making database systems usable .',\n",
" 'variables': [{'example': 'Making database systems usable',\n",
" 'location': 'both',\n",
" 'name': 'publication_title0',\n",
" 'type': 'publication_title'}]},\n",
" {'db_id': 'academic',\n",
" 'db_path': 'database/academic/academic.sqlite',\n",
" 'orig_id': ('academic', 3),\n",
" 'query': 'SELECT PUBLICATIONalias0.YEAR FROM PUBLICATION AS '\n",
" 'PUBLICATIONalias0 WHERE PUBLICATIONalias0.TITLE = \"Making database '\n",
" 'systems usable\" ;',\n",
" 'text': 'return me the year of Making database systems usable',\n",
" 'variables': [{'example': 'Making database systems usable',\n",
" 'location': 'both',\n",
" 'name': 'publication_title0',\n",
" 'type': 'publication_title'}]},\n",
" {'db_id': 'academic',\n",
" 'db_path': 'database/academic/academic.sqlite',\n",
" 'orig_id': ('academic', 3),\n",
" 'query': 'SELECT PUBLICATIONalias0.YEAR FROM PUBLICATION AS '\n",
" 'PUBLICATIONalias0 WHERE PUBLICATIONalias0.TITLE = \"Making database '\n",
" 'systems usable\" ;',\n",
" 'text': 'return me the year of Making database systems usable .',\n",
" 'variables': [{'example': 'Making database systems usable',\n",
" 'location': 'both',\n",
" 'name': 'publication_title0',\n",
" 'type': 'publication_title'}]}]\n"
]
}
],
"source": [
"from pprint import pprint\n",
"\n",
"pprint(new_testset[:5])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|