File size: 13,316 Bytes
b247dc4
 
 
 
 
 
 
 
 
 
 
 
 
 
4b67f9f
b247dc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b67f9f
 
 
 
 
 
 
 
 
b247dc4
4b67f9f
 
 
 
 
 
 
 
b247dc4
 
 
 
 
 
 
 
 
 
 
 
 
4b67f9f
b247dc4
4b67f9f
 
b247dc4
 
 
 
 
 
4b67f9f
 
 
 
 
b247dc4
4b67f9f
b247dc4
4b67f9f
b247dc4
4b67f9f
b247dc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
"""Evaluate text2sql spider model predictions."""
import json
import os
import re
import signal
import sys
import traceback
from pathlib import Path
from typing import Any

import click
import pandas as pd
from rich.console import Console
from tqdm.auto import tqdm
from concurrent.futures import ThreadPoolExecutor, TimeoutError

sys.path.append(os.path.join(os.path.dirname(__file__), "."))
# from metrics.spider import evaluation as spider_evaluation  # type: ignore # noqa: E402
from metrics.test_suite_sql_eval import (  # type: ignore # noqa: E402
    evaluation as test_suite_evaluation,
)
from data_utils import read_tables_json  # type: ignore  # noqa: E402
from metric_utils import (  # type: ignore  # noqa: E402
    correct_casing,
    edit_distance,
)

console = Console(soft_wrap=True)

LEVELS = ["easy", "medium", "hard", "duckdb", "ddl", "all"]
PARTIAL_TYPES = [
    "select",
    "select(no AGG)",
    "where",
    "where(no OP)",
    "group(no Having)",
    "group",
    "order",
    "and/or",
    "IUEN",
    "keywords",
]
TIMEOUT_SECONDS = 30


def timeout_handler(signum: int, frame: Any) -> None:
    raise TimeoutError("Function execution timed out.")


def print_scores(scores: dict, model_name: str, metric_type: str = "exec") -> None:
    """Print scores."""

    def print_formated_s(
        row_name: str, l: list[str], element_format: str = "{}", sep: str = "\t"
    ) -> None:
        template = "{}" + sep + sep.join([element_format] * len(l))
        console.print(template.format(row_name, *l))

    # Add empty scores for each level if not present
    for level in LEVELS:
        if level not in scores:
            scores[level] = {}
            scores[level]["count"] = 0
            scores[level]["exec"] = 0
            scores[level]["exact"] = 0

    print_formated_s("", LEVELS)
    counts = [scores[level]["count"] for level in LEVELS]
    print_formated_s("count", counts)
    console.print(f">======================   {model_name}     =====================")
    if metric_type == "exec":
        console.print(
            ">=====================   EXECUTION ACCURACY     ====================="
        )
        exec_scores = [scores[level]["exec"] for level in LEVELS]
        print_formated_s("execution", exec_scores, element_format="{:.3f}")

    elif metric_type == "exact":
        console.print(
            "\n>====================== EXACT MATCHING ACCURACY ====================="
        )
        exact_scores = [scores[level]["exact"] for level in LEVELS]
        print_formated_s("exact match", exact_scores, element_format="{:.3f}")


def compute_exact_match_metric(
    predictions: list,
    references: list,
    gold_dbs: list,
    kmaps: dict,
    db_dir: str,
    categories,
) -> dict:
    """Compute exact match metric."""
    exact_match = {}
    exact_match["all"] = {}
    exact_match["all"]["count"] = 0
    exact_match["all"]["exact"] = 0
    for prediction, reference, gold_db, category in tqdm(
        zip(predictions, references, gold_dbs, categories), total=len(predictions)
    ):
        if category not in exact_match:
            exact_match[category] = {}
            exact_match[category]["count"] = 0
            exact_match[category]["exact"] = 0
        exact_match["all"]["count"] += 1
        exact_match[category]["count"] += 1
        try:
            match = int(prediction.trim() == reference.trim())
            exact_match[category]["exact"] += match
            exact_match["all"]["exact"] += match
        except Exception:
            pass
    return exact_match


def evaluate_with_timeout(evaluator, *args, timeout):
    with ThreadPoolExecutor(max_workers=1) as executor:
        future = executor.submit(evaluator.evaluate_one, *args)
        try:
            result = future.result(timeout=timeout)
        except TimeoutError:
            result = None
    return result

def compute_test_suite_metric(
        predictions: list,
        references: list,
        gold_dbs: list,
        setup_sqls: list,
        validate_sqls: list,
        kmaps: dict,
        db_dir: str,
        categories: list[str] = None,
) -> tuple[Any, list[int | None]]:
    """Compute test suite execution metric."""
    evaluator = test_suite_evaluation.Evaluator(
        db_dir=db_dir,
        kmaps=kmaps,
        etype="exec",
        plug_value=False,
        keep_distinct=False,
        progress_bar_for_each_datapoint=False,
    )
    # Only used for Sparc/CoSQL
    turn_scores: dict[str, list] = {"exec": [], "exact": []}
    by_row_metrics: list[int | None] = []

    for prediction, reference, gold_db, setup_sql, validate_sql, category in tqdm(
            zip(predictions, references, gold_dbs, setup_sqls, validate_sqls, categories),
            total=len(predictions),
    ):
        turn_idx = 0
        # skip final utterance-query pairs
        if turn_idx < 0:
            continue

        # Use the new function to evaluate with timeout
        ex_metrics = evaluate_with_timeout(
            evaluator, gold_db, reference, prediction, setup_sql, validate_sql,
            turn_scores, timeout=TIMEOUT_SECONDS
        )

        if ex_metrics:
            by_row_metrics.append(int(ex_metrics["exec"]))
        else:
            by_row_metrics.append(None)

    evaluator.finalize()
    return evaluator.scores, by_row_metrics


def compute_metrics(
    gold_sqls: list[str],
    pred_sqls: list[str],
    gold_dbs: list[str],
    setup_sqls: list[str],
    validate_sqls: list[str],
    kmaps: dict,
    db_schemas: dict,
    database_dir: str,
    lowercase_schema_match: bool,
    model_name: str,
    categories: list[str] = None,
) -> dict[str, str]:
    """Compute all metrics for data slice."""
    if len(gold_sqls) != len(pred_sqls):
        raise ValueError(
            f"Gold {len(gold_sqls)} and pred {len(pred_sqls)} have different number of lines!"
        )
    all_metrics: dict[str, Any] = {}

    # Execution Accuracy
    metrics, by_row_metrics = compute_test_suite_metric(
        pred_sqls,
        gold_sqls,
        gold_dbs,
        setup_sqls,
        validate_sqls,
        kmaps,
        database_dir,
        categories,
    )
    all_metrics["exec"] = metrics
    all_metrics["by_row_exec"] = by_row_metrics
    print_scores(metrics, model_name, "exec")

    # Exact Match Accuracy
    metrics = compute_exact_match_metric(
        pred_sqls, gold_sqls, gold_dbs, kmaps, database_dir, categories
    )
    all_metrics["exact"] = metrics
    print_scores(metrics, model_name, "exact")

    # Equality Accuracy
    per_row_match = [
        int(gold.lower() == pred.lower()) for gold, pred in zip(gold_sqls, pred_sqls)
    ]
    all_metrics["equality"] = {"equality": sum(per_row_match) / len(gold_sqls)}
    all_metrics["by_row_equality"] = per_row_match

    # Edit Distance
    per_row_edit_dist = [
        edit_distance(gold, pred) for gold, pred in zip(gold_sqls, pred_sqls)
    ]
    edit_dist = sum(per_row_edit_dist) / len(gold_sqls)
    all_metrics["edit_distance"] = {"edit_distance": edit_dist}
    all_metrics["by_row_edit_distance"] = per_row_edit_dist

    return all_metrics


def get_to_print(metrics: dict, key: str, model_name: str, num_rows: int) -> dict:
    """Get pretty print dictionary of metrics."""
    return {
        "slice": key,
        "model": model_name,
        "support": num_rows,
        "exec": f"{metrics[key]['exec']['all']['exec']:.3f}",
        "exact": f"{metrics[key]['exact']['all']['exact']:.3f}",
        "equality": f"{metrics[key]['equality']['equality']:.3f}",
        "edit_distance": f"{metrics[key]['edit_distance']['edit_distance']:.3f}",
    }


@click.group()
def cli() -> None:
    """Entrypoint."""
    pass


@cli.command()
@click.option("--gold", type=str, required=True)
@click.option("--pred", type=str, required=True)
@click.option("--tables", type=str, required=True)
@click.option("--db", type=str, default="")
@click.option("--slice-attribute", type=str, default=None)
@click.option("--output-dir", type=str, default="")
@click.option("--output-filename", type=str, default="")
@click.option(
    "--correct-sql-casing", type=bool, is_flag=True, default=False, required=False
)
@click.option(
    "--lowercase-schema-match", type=bool, is_flag=True, default=False, required=False
)
def evaluate(
    gold: str,
    pred: str,
    tables: str,
    db: str,
    slice_attribute: str,
    output_dir: str,
    output_filename: str,
    correct_sql_casing: bool,
    lowercase_schema_match: bool,
) -> None:
    """Evaluate SQL.

    Args:
        gold: path to gold sql file.
        pred: path to predicted json lines file.
        tables: the json path of the table metadata.
        db: path to database dir.
        slice_attribute: json attribute in gold data to slice on.
        output_dir: the prediction output directory
        output_filename: the prediction output filename
        correct_sql_casing: whether to correct casing of SQL keywords
        lowercase_schema_match: whether to lowercase schema match
    """
    gold_path = Path(gold)
    pred_path = Path(pred)
    model_name = pred_path.stem
    if not output_filename:
        output_filename = pred_path.stem + "_eval.json"
    console.print(f"Saving to {Path(output_dir) / output_filename}")
    Path(output_dir).mkdir(parents=True, exist_ok=True)

    kmaps = test_suite_evaluation.build_foreign_key_map_from_json(tables)
    db_schemas = read_tables_json(tables)

    gold_sqls_dict = json.load(gold_path.open("r", encoding="utf-8"))
    pred_sqls_dict = [json.loads(l) for l in pred_path.open("r").readlines()]

    # Data validation
    assert len(gold_sqls_dict) == len(
        pred_sqls_dict
    ), "Sample size doesn't match between pred and gold file"

    # Keep track of everything
    full_results = []
    for gold_sql, pred_sql in zip(gold_sqls_dict, pred_sqls_dict):
        merged_res = {**pred_sql, **gold_sql}
        full_results.append(merged_res)

    gold_sqls = [
        re.sub(r"[\s\t\n]+", " ", p.get("gold", p.get("query", p.get("sql", ""))))
        for p in gold_sqls_dict
    ]
    setup_sqls = [re.sub(r"[\s\t\n]+", " ", p["setup_sql"]) for p in gold_sqls_dict]
    validate_sqls = [
        re.sub(r"[\s\t\n]+", " ", p["validation_sql"]) for p in gold_sqls_dict
    ]
    gold_dbs = [p.get("db_id", p.get("db", "")) for p in gold_sqls_dict]
    pred_sqls = [re.sub(r"[\s\t\n]+", " ", p["pred"]) for p in pred_sqls_dict]
    categories = [p.get("category", "") for p in gold_sqls_dict]
    if correct_sql_casing:
        # One line to correct casing of SQL keywords using correct_casing(sql)
        gold_sqls = [correct_casing(sql) for sql in gold_sqls]
        pred_sqls = [correct_casing(sql) for sql in pred_sqls]

    final_metrics: dict[str, dict[str, Any]] = {}
    to_print = []
    final_metrics["all"] = compute_metrics(
        gold_sqls=gold_sqls,
        pred_sqls=pred_sqls,
        gold_dbs=gold_dbs,
        setup_sqls=setup_sqls,
        validate_sqls=validate_sqls,
        kmaps=kmaps,
        db_schemas=db_schemas,
        database_dir=db,
        lowercase_schema_match=lowercase_schema_match,
        model_name=model_name + "(all)",
        categories=categories,
    )

    for k, v in final_metrics["all"].items():
        if k.startswith("by_row"):
            assert len(v) == len(gold_sqls)
            for dct, val in zip(full_results, v):
                dct[k[len("by_row_") :]] = val
    to_print.append(get_to_print(final_metrics, "all", model_name, len(gold_sqls)))
    # TODO: could be way more efficient if we subsliced the results but...whatever
    if slice_attribute:
        for unq_value in sorted(set([g[slice_attribute] for g in gold_sqls_dict])):
            idx_set = [
                i
                for i, g in enumerate(gold_sqls_dict)
                if g[slice_attribute] == unq_value
            ]
            print(f"Processing {unq_value} with {len(idx_set)} samples")
            final_metrics[unq_value] = compute_metrics(
                gold_sqls=[gold_sqls[i] for i in idx_set],
                pred_sqls=[pred_sqls[i] for i in idx_set],
                gold_dbs=[gold_dbs[i] for i in idx_set],
                setup_sqls=[setup_sqls[i] for i in idx_set],
                validate_sqls=[validate_sqls[i] for i in idx_set],
                kmaps=kmaps,
                db_schemas=db_schemas,
                database_dir=db,
                lowercase_schema_match=lowercase_schema_match,
                model_name=model_name + f"({unq_value})",
                categories=[categories[i] for i in idx_set],
            )
            to_print.append(
                get_to_print(final_metrics, unq_value, model_name, len(idx_set))
            )

    df = pd.DataFrame(to_print)
    console.print(df.to_csv(sep=",", index=False))
    console.print("******")
    console.print(f"Saved metrics to {Path(output_dir) / output_filename}")
    json.dump(final_metrics, open(Path(output_dir) / output_filename, "w"), indent=4)
    output_filename = str(output_filename).replace("_eval.json", "_fd.jsonl")
    console.print(f"Saved dump to {Path(output_dir) / output_filename}")
    with open(Path(output_dir) / output_filename, "w") as f:
        for dct in full_results:
            f.write(json.dumps(dct) + "\n")


if __name__ == "__main__":
    cli()