Spaces:
Running
Running
File size: 13,316 Bytes
b247dc4 4b67f9f b247dc4 4b67f9f b247dc4 4b67f9f b247dc4 4b67f9f b247dc4 4b67f9f b247dc4 4b67f9f b247dc4 4b67f9f b247dc4 4b67f9f b247dc4 4b67f9f b247dc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
"""Evaluate text2sql spider model predictions."""
import json
import os
import re
import signal
import sys
import traceback
from pathlib import Path
from typing import Any
import click
import pandas as pd
from rich.console import Console
from tqdm.auto import tqdm
from concurrent.futures import ThreadPoolExecutor, TimeoutError
sys.path.append(os.path.join(os.path.dirname(__file__), "."))
# from metrics.spider import evaluation as spider_evaluation # type: ignore # noqa: E402
from metrics.test_suite_sql_eval import ( # type: ignore # noqa: E402
evaluation as test_suite_evaluation,
)
from data_utils import read_tables_json # type: ignore # noqa: E402
from metric_utils import ( # type: ignore # noqa: E402
correct_casing,
edit_distance,
)
console = Console(soft_wrap=True)
LEVELS = ["easy", "medium", "hard", "duckdb", "ddl", "all"]
PARTIAL_TYPES = [
"select",
"select(no AGG)",
"where",
"where(no OP)",
"group(no Having)",
"group",
"order",
"and/or",
"IUEN",
"keywords",
]
TIMEOUT_SECONDS = 30
def timeout_handler(signum: int, frame: Any) -> None:
raise TimeoutError("Function execution timed out.")
def print_scores(scores: dict, model_name: str, metric_type: str = "exec") -> None:
"""Print scores."""
def print_formated_s(
row_name: str, l: list[str], element_format: str = "{}", sep: str = "\t"
) -> None:
template = "{}" + sep + sep.join([element_format] * len(l))
console.print(template.format(row_name, *l))
# Add empty scores for each level if not present
for level in LEVELS:
if level not in scores:
scores[level] = {}
scores[level]["count"] = 0
scores[level]["exec"] = 0
scores[level]["exact"] = 0
print_formated_s("", LEVELS)
counts = [scores[level]["count"] for level in LEVELS]
print_formated_s("count", counts)
console.print(f">====================== {model_name} =====================")
if metric_type == "exec":
console.print(
">===================== EXECUTION ACCURACY ====================="
)
exec_scores = [scores[level]["exec"] for level in LEVELS]
print_formated_s("execution", exec_scores, element_format="{:.3f}")
elif metric_type == "exact":
console.print(
"\n>====================== EXACT MATCHING ACCURACY ====================="
)
exact_scores = [scores[level]["exact"] for level in LEVELS]
print_formated_s("exact match", exact_scores, element_format="{:.3f}")
def compute_exact_match_metric(
predictions: list,
references: list,
gold_dbs: list,
kmaps: dict,
db_dir: str,
categories,
) -> dict:
"""Compute exact match metric."""
exact_match = {}
exact_match["all"] = {}
exact_match["all"]["count"] = 0
exact_match["all"]["exact"] = 0
for prediction, reference, gold_db, category in tqdm(
zip(predictions, references, gold_dbs, categories), total=len(predictions)
):
if category not in exact_match:
exact_match[category] = {}
exact_match[category]["count"] = 0
exact_match[category]["exact"] = 0
exact_match["all"]["count"] += 1
exact_match[category]["count"] += 1
try:
match = int(prediction.trim() == reference.trim())
exact_match[category]["exact"] += match
exact_match["all"]["exact"] += match
except Exception:
pass
return exact_match
def evaluate_with_timeout(evaluator, *args, timeout):
with ThreadPoolExecutor(max_workers=1) as executor:
future = executor.submit(evaluator.evaluate_one, *args)
try:
result = future.result(timeout=timeout)
except TimeoutError:
result = None
return result
def compute_test_suite_metric(
predictions: list,
references: list,
gold_dbs: list,
setup_sqls: list,
validate_sqls: list,
kmaps: dict,
db_dir: str,
categories: list[str] = None,
) -> tuple[Any, list[int | None]]:
"""Compute test suite execution metric."""
evaluator = test_suite_evaluation.Evaluator(
db_dir=db_dir,
kmaps=kmaps,
etype="exec",
plug_value=False,
keep_distinct=False,
progress_bar_for_each_datapoint=False,
)
# Only used for Sparc/CoSQL
turn_scores: dict[str, list] = {"exec": [], "exact": []}
by_row_metrics: list[int | None] = []
for prediction, reference, gold_db, setup_sql, validate_sql, category in tqdm(
zip(predictions, references, gold_dbs, setup_sqls, validate_sqls, categories),
total=len(predictions),
):
turn_idx = 0
# skip final utterance-query pairs
if turn_idx < 0:
continue
# Use the new function to evaluate with timeout
ex_metrics = evaluate_with_timeout(
evaluator, gold_db, reference, prediction, setup_sql, validate_sql,
turn_scores, timeout=TIMEOUT_SECONDS
)
if ex_metrics:
by_row_metrics.append(int(ex_metrics["exec"]))
else:
by_row_metrics.append(None)
evaluator.finalize()
return evaluator.scores, by_row_metrics
def compute_metrics(
gold_sqls: list[str],
pred_sqls: list[str],
gold_dbs: list[str],
setup_sqls: list[str],
validate_sqls: list[str],
kmaps: dict,
db_schemas: dict,
database_dir: str,
lowercase_schema_match: bool,
model_name: str,
categories: list[str] = None,
) -> dict[str, str]:
"""Compute all metrics for data slice."""
if len(gold_sqls) != len(pred_sqls):
raise ValueError(
f"Gold {len(gold_sqls)} and pred {len(pred_sqls)} have different number of lines!"
)
all_metrics: dict[str, Any] = {}
# Execution Accuracy
metrics, by_row_metrics = compute_test_suite_metric(
pred_sqls,
gold_sqls,
gold_dbs,
setup_sqls,
validate_sqls,
kmaps,
database_dir,
categories,
)
all_metrics["exec"] = metrics
all_metrics["by_row_exec"] = by_row_metrics
print_scores(metrics, model_name, "exec")
# Exact Match Accuracy
metrics = compute_exact_match_metric(
pred_sqls, gold_sqls, gold_dbs, kmaps, database_dir, categories
)
all_metrics["exact"] = metrics
print_scores(metrics, model_name, "exact")
# Equality Accuracy
per_row_match = [
int(gold.lower() == pred.lower()) for gold, pred in zip(gold_sqls, pred_sqls)
]
all_metrics["equality"] = {"equality": sum(per_row_match) / len(gold_sqls)}
all_metrics["by_row_equality"] = per_row_match
# Edit Distance
per_row_edit_dist = [
edit_distance(gold, pred) for gold, pred in zip(gold_sqls, pred_sqls)
]
edit_dist = sum(per_row_edit_dist) / len(gold_sqls)
all_metrics["edit_distance"] = {"edit_distance": edit_dist}
all_metrics["by_row_edit_distance"] = per_row_edit_dist
return all_metrics
def get_to_print(metrics: dict, key: str, model_name: str, num_rows: int) -> dict:
"""Get pretty print dictionary of metrics."""
return {
"slice": key,
"model": model_name,
"support": num_rows,
"exec": f"{metrics[key]['exec']['all']['exec']:.3f}",
"exact": f"{metrics[key]['exact']['all']['exact']:.3f}",
"equality": f"{metrics[key]['equality']['equality']:.3f}",
"edit_distance": f"{metrics[key]['edit_distance']['edit_distance']:.3f}",
}
@click.group()
def cli() -> None:
"""Entrypoint."""
pass
@cli.command()
@click.option("--gold", type=str, required=True)
@click.option("--pred", type=str, required=True)
@click.option("--tables", type=str, required=True)
@click.option("--db", type=str, default="")
@click.option("--slice-attribute", type=str, default=None)
@click.option("--output-dir", type=str, default="")
@click.option("--output-filename", type=str, default="")
@click.option(
"--correct-sql-casing", type=bool, is_flag=True, default=False, required=False
)
@click.option(
"--lowercase-schema-match", type=bool, is_flag=True, default=False, required=False
)
def evaluate(
gold: str,
pred: str,
tables: str,
db: str,
slice_attribute: str,
output_dir: str,
output_filename: str,
correct_sql_casing: bool,
lowercase_schema_match: bool,
) -> None:
"""Evaluate SQL.
Args:
gold: path to gold sql file.
pred: path to predicted json lines file.
tables: the json path of the table metadata.
db: path to database dir.
slice_attribute: json attribute in gold data to slice on.
output_dir: the prediction output directory
output_filename: the prediction output filename
correct_sql_casing: whether to correct casing of SQL keywords
lowercase_schema_match: whether to lowercase schema match
"""
gold_path = Path(gold)
pred_path = Path(pred)
model_name = pred_path.stem
if not output_filename:
output_filename = pred_path.stem + "_eval.json"
console.print(f"Saving to {Path(output_dir) / output_filename}")
Path(output_dir).mkdir(parents=True, exist_ok=True)
kmaps = test_suite_evaluation.build_foreign_key_map_from_json(tables)
db_schemas = read_tables_json(tables)
gold_sqls_dict = json.load(gold_path.open("r", encoding="utf-8"))
pred_sqls_dict = [json.loads(l) for l in pred_path.open("r").readlines()]
# Data validation
assert len(gold_sqls_dict) == len(
pred_sqls_dict
), "Sample size doesn't match between pred and gold file"
# Keep track of everything
full_results = []
for gold_sql, pred_sql in zip(gold_sqls_dict, pred_sqls_dict):
merged_res = {**pred_sql, **gold_sql}
full_results.append(merged_res)
gold_sqls = [
re.sub(r"[\s\t\n]+", " ", p.get("gold", p.get("query", p.get("sql", ""))))
for p in gold_sqls_dict
]
setup_sqls = [re.sub(r"[\s\t\n]+", " ", p["setup_sql"]) for p in gold_sqls_dict]
validate_sqls = [
re.sub(r"[\s\t\n]+", " ", p["validation_sql"]) for p in gold_sqls_dict
]
gold_dbs = [p.get("db_id", p.get("db", "")) for p in gold_sqls_dict]
pred_sqls = [re.sub(r"[\s\t\n]+", " ", p["pred"]) for p in pred_sqls_dict]
categories = [p.get("category", "") for p in gold_sqls_dict]
if correct_sql_casing:
# One line to correct casing of SQL keywords using correct_casing(sql)
gold_sqls = [correct_casing(sql) for sql in gold_sqls]
pred_sqls = [correct_casing(sql) for sql in pred_sqls]
final_metrics: dict[str, dict[str, Any]] = {}
to_print = []
final_metrics["all"] = compute_metrics(
gold_sqls=gold_sqls,
pred_sqls=pred_sqls,
gold_dbs=gold_dbs,
setup_sqls=setup_sqls,
validate_sqls=validate_sqls,
kmaps=kmaps,
db_schemas=db_schemas,
database_dir=db,
lowercase_schema_match=lowercase_schema_match,
model_name=model_name + "(all)",
categories=categories,
)
for k, v in final_metrics["all"].items():
if k.startswith("by_row"):
assert len(v) == len(gold_sqls)
for dct, val in zip(full_results, v):
dct[k[len("by_row_") :]] = val
to_print.append(get_to_print(final_metrics, "all", model_name, len(gold_sqls)))
# TODO: could be way more efficient if we subsliced the results but...whatever
if slice_attribute:
for unq_value in sorted(set([g[slice_attribute] for g in gold_sqls_dict])):
idx_set = [
i
for i, g in enumerate(gold_sqls_dict)
if g[slice_attribute] == unq_value
]
print(f"Processing {unq_value} with {len(idx_set)} samples")
final_metrics[unq_value] = compute_metrics(
gold_sqls=[gold_sqls[i] for i in idx_set],
pred_sqls=[pred_sqls[i] for i in idx_set],
gold_dbs=[gold_dbs[i] for i in idx_set],
setup_sqls=[setup_sqls[i] for i in idx_set],
validate_sqls=[validate_sqls[i] for i in idx_set],
kmaps=kmaps,
db_schemas=db_schemas,
database_dir=db,
lowercase_schema_match=lowercase_schema_match,
model_name=model_name + f"({unq_value})",
categories=[categories[i] for i in idx_set],
)
to_print.append(
get_to_print(final_metrics, unq_value, model_name, len(idx_set))
)
df = pd.DataFrame(to_print)
console.print(df.to_csv(sep=",", index=False))
console.print("******")
console.print(f"Saved metrics to {Path(output_dir) / output_filename}")
json.dump(final_metrics, open(Path(output_dir) / output_filename, "w"), indent=4)
output_filename = str(output_filename).replace("_eval.json", "_fd.jsonl")
console.print(f"Saved dump to {Path(output_dir) / output_filename}")
with open(Path(output_dir) / output_filename, "w") as f:
for dct in full_results:
f.write(json.dumps(dct) + "\n")
if __name__ == "__main__":
cli()
|