File size: 5,414 Bytes
b247dc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "%load_ext autoreload\n",
    "%autoreload 2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "OPENAI_KEY1 = \"sk-XXX\"\n",
    "OPENAI_KEY2 = \"sk-XX\""
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Use OpenAI\n",
    "\n",
    "Set you `OPENAI_API_KEY` environment variable."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "from manifest import Manifest\n",
    "from manifest.connections.client_pool import ClientConnection\n",
    "\n",
    "openai_ada = ClientConnection(\n",
    "    client_name=\"openai\",\n",
    "    client_connection=OPENAI_KEY1,\n",
    "    engine=\"text-ada-001\"\n",
    ")\n",
    "\n",
    "openai_curie = ClientConnection(\n",
    "    client_name=\"openai\",\n",
    "    client_connection=OPENAI_KEY2,\n",
    "    engine=\"text-curie-001\"\n",
    ")\n",
    "\n",
    "manifest = Manifest(client_pool=[openai_ada, openai_curie], client_pool_schedule=\"round_robin\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0\n",
      "I am a model.\n",
      "1\n",
      "I am a MacBook Pro with a retina\n"
     ]
    }
   ],
   "source": [
    "res = manifest.run(\"What model are you?\", temperature=0.0)\n",
    "print(manifest.client_pool.current_client_id)\n",
    "print(res)\n",
    "res = manifest.run(\"What model are you?\", temperature=0.0)\n",
    "print(manifest.client_pool.current_client_id)\n",
    "print(res)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## With Async"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "import nest_asyncio\n",
    "# This is required for asyncio.run(...) to work in Jupyter notebooks.\n",
    "nest_asyncio.apply()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "from manifest import Manifest\n",
    "from manifest.connections.client_pool import ClientConnection\n",
    "\n",
    "openai_ada = ClientConnection(\n",
    "    client_name=\"openai\",\n",
    "    client_connection=OPENAI_KEY1,\n",
    "    engine=\"text-ada-001\"\n",
    ")\n",
    "\n",
    "openai_babbage = ClientConnection(\n",
    "    client_name=\"openai\",\n",
    "    client_connection=OPENAI_KEY2,\n",
    "    engine=\"text-babbage-001\"\n",
    ")\n",
    "\n",
    "openai_curie = ClientConnection(\n",
    "    client_name=\"openai\",\n",
    "    client_connection=OPENAI_KEY2,\n",
    "    engine=\"text-curie-001\"\n",
    ")\n",
    "\n",
    "manifest = Manifest(client_pool=[openai_ada, openai_babbage, openai_curie], client_pool_schedule=\"round_robin\")\n",
    "manifest_single_client = Manifest(client_pool=[openai_babbage])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "For loop: 128.68\n",
      "Running with async single client\n",
      "Running 1 tasks across all clients.\n",
      "Async loop: 4.02\n",
      "Running with async two clients but not chunking\n",
      "Running 1 tasks across all clients.\n",
      "Async loop: 3.92\n",
      "Running with async two clients and chunk size\n",
      "Running 20 tasks across all clients.\n",
      "Async loop: 1.44\n"
     ]
    }
   ],
   "source": [
    "import time\n",
    "import asyncio\n",
    "\n",
    "prompts = [f\"Tell me something interesting about {i}\" for i in range(400)]\n",
    "st = time.time()\n",
    "for pmt in prompts:\n",
    "    _ = manifest_single_client.run(pmt, max_tokens=30)\n",
    "print(f\"For loop: {time.time() - st :.2f}\")\n",
    "\n",
    "print(\"Running with async single client\")\n",
    "st = time.time()\n",
    "_ = asyncio.run(manifest_single_client.arun_batch(prompts, max_tokens=30, chunk_size=-1))\n",
    "print(f\"Async loop: {time.time() - st :.2f}\")\n",
    "\n",
    "print(\"Running with async two clients but not chunking\")\n",
    "st = time.time()\n",
    "_ = asyncio.run(manifest.arun_batch(prompts, max_tokens=30, chunk_size=-1))\n",
    "print(f\"Async loop: {time.time() - st :.2f}\")\n",
    "\n",
    "print(\"Running with async two clients and chunk size\")\n",
    "st = time.time()\n",
    "_ = asyncio.run(manifest.arun_batch(prompts, max_tokens=30, chunk_size=20))\n",
    "print(f\"Async loop: {time.time() - st :.2f}\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "manifest",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.4"
  },
  "orig_nbformat": 4,
  "vscode": {
   "interpreter": {
    "hash": "fddffe4ac3b9f00470127629076101c1b5f38ecb1e7358b567d19305425e9491"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}