File size: 13,211 Bytes
b247dc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
{
 "cells": [
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "b253f4d5",
   "metadata": {},
   "source": [
    "# ChatGPT Clone using TOMA GPT-JT-6B\n",
    "(adopted from ChatGPT Clone [notebook](https://github.com/hwchase17/langchain/blob/master/docs/examples/chains/chatgpt_clone.ipynb))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "b0302886",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "env: TOMA_URL=https://staging.together.xyz/api\n"
     ]
    }
   ],
   "source": [
    "%env TOMA_URL=https://staging.together.xyz/api"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "93a18ea6",
   "metadata": {},
   "source": [
    "Make sure you have langchain installed and manifest. For the most recent versions, run\n",
    "```\n",
    "pip install git+https://github.com/hwchase17/langchain.git\n",
    "pip install git+https://github.com/HazyResearch/manifest.git\n",
    "```"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "id": "a99acd89",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
      "Prompt after formatting:\n",
      "\u001b[32;1m\u001b[1;3mI am a classification model. It will try to classify your input.\n",
      "\n",
      "\n",
      "Input: Classes are \"positive\" and \"negative\". For example given\n",
      "Input: I love this product!\n",
      "Output: positive.\n",
      "I think this movie was one of the worst of the year. Script was boring!\n",
      "Output:\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished LLMChain chain.\u001b[0m\n",
      "negative.\n"
     ]
    }
   ],
   "source": [
    "from manifest import Manifest\n",
    "from langchain.llms.manifest import ManifestWrapper\n",
    "from langchain import ConversationChain, LLMChain, PromptTemplate\n",
    "from langchain.chains.conversation.memory import ConversationalBufferWindowMemory\n",
    "\n",
    "\n",
    "template = \"\"\"I am a classification model. It will try to classify your input.\n",
    "\n",
    "{history}\n",
    "Input: {human_input}\n",
    "Output:\"\"\"\n",
    "\n",
    "prompt = PromptTemplate(\n",
    "    input_variables=[\"history\", \"human_input\"], \n",
    "    template=template\n",
    ")\n",
    "\n",
    "manifest = Manifest(\n",
    "    client_name=\"toma\",\n",
    "    engine=\"Together-gpt-JT-6B-v1\",\n",
    "    max_tokens=150,\n",
    "    top_p=0.9,\n",
    "    top_k=40,\n",
    "    stop_sequences=[\"\\n\"],\n",
    ")\n",
    "\n",
    "chatgpt_chain = LLMChain(\n",
    "    llm=ManifestWrapper(client=manifest), \n",
    "    prompt=prompt, \n",
    "    verbose=True, \n",
    "    memory=ConversationalBufferWindowMemory(k=8),\n",
    ")\n",
    "\n",
    "output = chatgpt_chain.predict(human_input=\"Classes are \\\"positive\\\" and \\\"negative\\\". For example given\\nInput: I love this product!\\nOutput: positive.\\nI think this movie was one of the worst of the year. Script was boring!\")\n",
    "print(output)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "id": "4ef711d6",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
      "Prompt after formatting:\n",
      "\u001b[32;1m\u001b[1;3mI am a classification model. It will try to classify your input.\n",
      "\n",
      "Human: Classes are \"positive\" and \"negative\". For example given\n",
      "Input: I love this product!\n",
      "Output: positive.\n",
      "I think this movie was one of the worst of the year. Script was boring!\n",
      "AI: negative.\n",
      "Input: So awesome! I wish I could have gone\n",
      "Output:\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished LLMChain chain.\u001b[0m\n",
      "positive.\n"
     ]
    }
   ],
   "source": [
    "output = chatgpt_chain.predict(human_input=\"So awesome! I wish I could have gone\")\n",
    "print(output)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "id": "a5d6dac2",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
      "Prompt after formatting:\n",
      "\u001b[32;1m\u001b[1;3mI am a classification model. It will try to classify your input.\n",
      "\n",
      "Human: Classes are \"positive\" and \"negative\". For example given\n",
      "Input: I love this product!\n",
      "Output: positive.\n",
      "I think this movie was one of the worst of the year. Script was boring!\n",
      "AI: negative.\n",
      "Human: So awesome! I wish I could have gone\n",
      "AI: positive.\n",
      "Input: Hate it.\n",
      "Output:\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished LLMChain chain.\u001b[0m\n",
      "negative.\n"
     ]
    }
   ],
   "source": [
    "output = chatgpt_chain.predict(human_input=\"Hate it.\")\n",
    "print(output)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 43,
   "id": "b9283077",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
      "Prompt after formatting:\n",
      "\u001b[32;1m\u001b[1;3mI am a classification model. It will try to classify your input.\n",
      "\n",
      "\n",
      "Input: Classes are fruits \"apple\", \"banana\", \"orange\", \"pear\". For example given\n",
      "Input: This fruit rippens off of the tree.\n",
      "Output: banana.\n",
      "Often comes in bosc and bartlett varieties.\n",
      "Output:\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished LLMChain chain.\u001b[0m\n",
      "apple.\n"
     ]
    }
   ],
   "source": [
    "chatgpt_chain.memory.clear()\n",
    "output = chatgpt_chain.predict(human_input=\"Classes are fruits \\\"apple\\\", \\\"banana\\\", \\\"orange\\\", \\\"pear\\\". For example given\\nInput: This fruit rippens off of the tree.\\nOutput: banana.\\nOften comes in bosc and bartlett varieties.\")\n",
    "print(output)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "id": "cd0a23d9",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
      "Prompt after formatting:\n",
      "\u001b[32;1m\u001b[1;3mI am a classification model. It will try to classify your input.\n",
      "\n",
      "Human: Classes are fruits \"apple\", \"banana\", \"orange\", \"pear\". For example given\n",
      "Input: This fruit rippens off of the tree.\n",
      "Output: banana.\n",
      "Often comes in bosc and bartlett varieties.\n",
      "AI: apple.\n",
      "Input: Often associated with monkeys\n",
      "Output:\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished LLMChain chain.\u001b[0m\n",
      "banana.\n"
     ]
    }
   ],
   "source": [
    "output = chatgpt_chain.predict(human_input=\"Often associated with monkeys\")\n",
    "print(output)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 45,
   "id": "90db6eb2",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
      "Prompt after formatting:\n",
      "\u001b[32;1m\u001b[1;3mI am a classification model. It will try to classify your input.\n",
      "\n",
      "Human: Classes are fruits \"apple\", \"banana\", \"orange\", \"pear\". For example given\n",
      "Input: This fruit rippens off of the tree.\n",
      "Output: banana.\n",
      "Often comes in bosc and bartlett varieties.\n",
      "AI: apple.\n",
      "Human: Often associated with monkeys\n",
      "AI: banana.\n",
      "Input: Is the color red and often delicious.\n",
      "Output:\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished LLMChain chain.\u001b[0m\n",
      "apple.\n"
     ]
    }
   ],
   "source": [
    "output = chatgpt_chain.predict(human_input=\"Is the color red and often delicious.\")\n",
    "print(output)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 48,
   "id": "c3806f89",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
      "Prompt after formatting:\n",
      "\u001b[32;1m\u001b[1;3mI am a classification model. It will try to classify your input.\n",
      "\n",
      "\n",
      "Input: Classes are colors \"red\", \"green\", \"blue\", \"yellow\". For example given\n",
      "Input: The color of a school bus.\n",
      "Output: yellow.\n",
      "Is the color of the sky\n",
      "Output:\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished LLMChain chain.\u001b[0m\n",
      "blue.\n"
     ]
    }
   ],
   "source": [
    "chatgpt_chain.memory.clear()\n",
    "output = chatgpt_chain.predict(human_input=\"Classes are colors \\\"red\\\", \\\"green\\\", \\\"blue\\\", \\\"yellow\\\". For example given\\nInput: The color of a school bus.\\nOutput: yellow.\\nIs the color of the sky\")\n",
    "print(output)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 49,
   "id": "f508f597",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
      "Prompt after formatting:\n",
      "\u001b[32;1m\u001b[1;3mI am a classification model. It will try to classify your input.\n",
      "\n",
      "Human: Classes are colors \"red\", \"green\", \"blue\", \"yellow\". For example given\n",
      "Input: The color of a school bus.\n",
      "Output: yellow.\n",
      "Is the color of the sky\n",
      "AI: blue.\n",
      "Input: Color of a banana.\n",
      "Output:\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished LLMChain chain.\u001b[0m\n",
      "yellow.\n"
     ]
    }
   ],
   "source": [
    "output = chatgpt_chain.predict(human_input=\"Color of a banana.\")\n",
    "print(output)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 50,
   "id": "cbd607f4",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
      "Prompt after formatting:\n",
      "\u001b[32;1m\u001b[1;3mI am a classification model. It will try to classify your input.\n",
      "\n",
      "Human: Classes are colors \"red\", \"green\", \"blue\", \"yellow\". For example given\n",
      "Input: The color of a school bus.\n",
      "Output: yellow.\n",
      "Is the color of the sky\n",
      "AI: blue.\n",
      "Human: Color of a banana.\n",
      "AI: yellow.\n",
      "Input: When someone is sick they are this color.\n",
      "Output:\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished LLMChain chain.\u001b[0m\n",
      "green.\n"
     ]
    }
   ],
   "source": [
    "output = chatgpt_chain.predict(human_input=\"When someone is sick they are this color.\")\n",
    "print(output)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 51,
   "id": "d33e0e28",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
      "Prompt after formatting:\n",
      "\u001b[32;1m\u001b[1;3mI am a classification model. It will try to classify your input.\n",
      "\n",
      "Human: Classes are colors \"red\", \"green\", \"blue\", \"yellow\". For example given\n",
      "Input: The color of a school bus.\n",
      "Output: yellow.\n",
      "Is the color of the sky\n",
      "AI: blue.\n",
      "Human: Color of a banana.\n",
      "AI: yellow.\n",
      "Human: When someone is sick they are this color.\n",
      "AI: green.\n",
      "Input: Color of anger.\n",
      "Output:\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished LLMChain chain.\u001b[0m\n",
      "red.\n"
     ]
    }
   ],
   "source": [
    "output = chatgpt_chain.predict(human_input=\"Color of anger.\")\n",
    "print(output)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "bootleg",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.12 | packaged by conda-forge | (default, Jan 30 2022, 23:36:06) \n[Clang 11.1.0 ]"
  },
  "vscode": {
   "interpreter": {
    "hash": "7a3f97ab0465937066e9b79893b779dfc8a12d73c41f9d98a7bf05133c798250"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}