File size: 3,492 Bytes
b247dc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "%load_ext autoreload\n",
    "%autoreload 2"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Use OpenAI\n",
    "\n",
    "Set you `OPENAI_API_KEY` environment variable."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'model_name': 'openaiembedding', 'engine': 'text-embedding-ada-002'}\n"
     ]
    }
   ],
   "source": [
    "from manifest import Manifest\n",
    "\n",
    "manifest = Manifest(client_name=\"openaiembedding\")\n",
    "print(manifest.client_pool.get_next_client().get_model_params())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "(1536,)\n"
     ]
    }
   ],
   "source": [
    "emb = manifest.run(\"Is this an embedding?\")\n",
    "print(emb.shape)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Using Locally Hosted Huggingface LM\n",
    "\n",
    "Run\n",
    "```\n",
    "python3 manifest/api/app.py --model_type huggingface --model_name_or_path EleutherAI/gpt-neo-125M --device 0\n",
    "```\n",
    "or\n",
    "```\n",
    "python3 manifest/api/app.py --model_type sentence_transformers --model_name_or_path all-mpnet-base-v2 --device 0\n",
    "```\n",
    "\n",
    "in a separate `screen` or `tmux`. Make sure to note the port. You can change this with `export FLASK_PORT=<port>`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'model_name': 'all-mpnet-base-v2', 'model_path': 'all-mpnet-base-v2', 'client_name': 'huggingfaceembedding'}\n"
     ]
    }
   ],
   "source": [
    "from manifest import Manifest\n",
    "\n",
    "# Local hosted GPT Neo 125M\n",
    "manifest = Manifest(\n",
    "    client_name=\"huggingfaceembedding\",\n",
    "    client_connection=\"http://127.0.0.1:6000\",\n",
    "    cache_name=\"sqlite\",\n",
    "    cache_connection=\"my_sqlite_manifest.sqlite\"\n",
    ")\n",
    "print(manifest.client_pool.get_next_client().get_model_params())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "(768,)\n",
      "(768,) (768,)\n"
     ]
    }
   ],
   "source": [
    "emb = manifest.run(\"Is this an embedding?\")\n",
    "print(emb.shape)\n",
    "\n",
    "emb = manifest.run([\"Is this an embedding?\", \"Bananas!!!\"])\n",
    "print(emb[0].shape, emb[1].shape)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "manifest",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.4"
  },
  "orig_nbformat": 4,
  "vscode": {
   "interpreter": {
    "hash": "fddffe4ac3b9f00470127629076101c1b5f38ecb1e7358b567d19305425e9491"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}